kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Презентация "Как устроена Вселенная"

Нажмите, чтобы узнать подробности

Презентация по материалам стенгазеты "Коротоко и ясно о самом интересном" астрогфизика Сергея Попова

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Презентация "Как устроена Вселенная"»

Как устроена Вселенная Десять важнейших фактов, лежащих в основе современной картины мира Презентация по материалам стенгазеты «Коротко и ясно о самом интересном» астрофизика Сергея Попова

Как устроена Вселенная

Десять важнейших фактов,

лежащих в основе современной картины мира

Презентация по материалам стенгазеты «Коротко и ясно о самом интересном» астрофизика Сергея Попова

1 . Солнце – рядовая звезда на окраине нашей Галактики. Расстояние от Солнца до ближайшей звезды – 4 световых года

Солнце – самая обыкновенная звезда (одна из примерно 400 млрд в нашей Галактике). В его недрах идут термоядерные реакции – водород превращается в гелий. Гравитация стремится схлопнуть звезду, а внутреннее давление этому противодействует. Важно, что Солнце и маленькие звёздочки на ночном небе – это, по сути, одно и то же. Кстати, это сразу позволяет нам примерно оценить расстояния до звёзд. Насколько далеко нужно отодвинуть Солнце, чтобы оно стало настолько слабым, как звезда ночного неба? Сейчас Солнце находится от Земли на расстоянии 150 млн км (это расстояние принято за одну астрономическую единицу). Оказывается, его нужно отодвинуть в сотни тысяч раз дальше для того, чтобы оно сравнялось по своему блеску со звёздами ночного неба.

Свет от Солнца идёт до нас 8,5 минут. А расстояния между звёздами в Галактике составляет обычно несколько световых лет. Световой год – это расстояние, которое луч света проходит за год, примерно 10 триллионов (10¹³) км. В профессиональной литературе чаще используются парсеки (световой год примерно равен 0,3 парсека)

1-2. Мощный выброс плазмы, произошедший на Солнце 31 августа 2012 года, зафиксированный космической обсерваторией SDO. Через двое суток земная магнитосфера отозвалась необыкновенно яркими полярными сияниями, которыми любовались даже на Гавайских островах

1-1. Эта красивая фотография Солнца в ультрафиолетовом диапазоне была получена сложением трёх по-разному раскрашенных снимков, отображающих волны разной длины (Alzate / SDO).

Солнце эволюционирует. Его возраст около 5 млрд лет. Ещё через 5 млрд лет закончится водород в его ядре. Солнце превратится в красный гигант, а затем – в белый карлик.

2. Солнечная система простирается далеко за орбиту Плутона и заканчивается примерно посередине между Солнцем и соседними звёздами.

Где заканчивается Солнечная система?

20 лет назад люди сказали бы, что за орбитой Плутона, сейчас, наверное, скажут, что за орбитой Нептуна. На самом деле Солнечная система гораздо больше. Подумайте: ведь если Солнечная система закончилась, то что-то должно было начаться. Наверное, это должна быть система вокруг какой-то другой звезды. Солнечная система заканчивается там, где гравитационное влияние Солнца сравнивается с влиянием соседних звёзд. То есть примерно посередине между Солнцем и ближайшими звёздами.

2-1. Рисунок, показывающий сравнительные размеры Солнца и планет (расстояния показаны произвольно).

2-3. Фото ядра кометы Чурюмова – Герасименко, сделанное 19 сентября 2014 года космическим аппаратом «Розетта». Состоит из двух столкнувшихся ядер размером 4,1×3,2×1,3 км и 2,5×2,5×2,0 км.

Можно ещё сказать, что граница Солнечной системы условно очерчена «облаком Оорта». Нидерландский астроном Ян Óорт известен тем, что впервые обосновал гипотезу о вращении Галактики вокруг её центра. Облако Оорта – интересный объект, который содержит десятки миллиардов кометных ядер. Они остались здесь со времени образования Солнечной системы. Было большое облако, центральная его часть схлопнулась, образовав Солнце и планеты. Кометы также образовались во внутренних частях Солнечной системы, но потом были выброшены оттуда гравитационным воздействием больших планет, в первую очередь Юпитера. Под влиянием ближайших звёзд некоторые ядра (а это – десятикилометровые куски льда) покидают облако и приближаются к Солнцу. Лёд начинает испаряться, у ядер отрастают хвосты и они превращаются в большие красивые кометы. Объекты, подобные облаку Оорта, известны и у других звёзд.

2-4. Комета Галлея (появление 1066 года) на гобелене из города Байё в Нормандии, 1080 год.

2-2. Предполагаемый вид облака Оорта, внемасштабный рисунок (NASA).

3. Звёзды рождаются и умирают, обогащая химический состав Галактики новыми элементами .

Самый неожиданный факт о звёздах, который люди узнали за последние 150 лет, это то, что звёзды эволюционируют. Звезды продолжают образовываться и в наши дни – из межзвёздного газа и пыли. Так начинается их жизненный путь, затем они эволюционируют и умирают. Эволюция звезды – это смена термоядерных реакций в её недрах. Вначале водород превращается в гелий, потом гелий – в углерод, кислород, азот и так далее, вплоть до элементов группы железа.

Лёгкие звёзды, подобные нашему Солнцу, живут очень долго (десятки миллиардов лет) и в конце своей жизни не взрываются, а раздуваются и сбрасывают внешние слои. Из самых маленьких звёзд не умерла ещё ни одна. Они все живы, даже если возникли в первые 100 млн лет после Большого взрыва. Более тяжёлые звёзды живут совсем недолго (несколько миллионов лет) и могут взрываться. Для этого им нужно быть раз в 10 тяжелее Солнца. Они создают внутри себя очень большое давление, плотность и температуру. Там очень интенсивно идут термоядерные реакции, поэтому они ярко светят и быстро пережигают запас «топлива». В результате взрыва (его называют взрывом сверхновой), внешние слои звезды, обогащённые синтезированными элементами, сбрасываются в межзвёздное пространство. Так в наши дни изменяется химический состав Галактики.

3-1. Одна из «звёздных колыбелей» – пылевые столбы «Мистическая гора» в туманности Киля (7,5 тысячи световых лет от нас). Фото космического телескопа «Хаббл»

3-2. Эта панорама туманности Ориона (1,5 тысячи световых лет от нас) собрана из 500 кадров орбитального телескопа «Хаббл» и нескольких наземных телескопов. В этих газово-пылевых облаках – более трёх тысяч звёзд разного размера и возраста

Если вы соберётесь написать научно-фантастический роман, не пишите, что ваш герой родился на планете возле, скажем, массивной голубой звезды. Дело в том, что подобные звёзды живут 2 млн лет, а планете, чтобы образоваться, требуется 10 млн лет. Я уж не говорю о том, что там никакая эволюция не начнётся, и никакой герой вашего романа не родится, даже если он – бактерия. Даже если звезда всего в два раза тяжелее Солнца, она живёт недостаточно для того, чтобы на её планетах зародилась жизнь.

3-3. Тройная туманность в созвездии Стрельца – молодая область звёздообразования.

4. В конце жизни звёзды превращаются в белые карлики, нейтронные звёзды или чёрные дыры.

4-2. Туманность Улитка (ближайшая к нам планетарная туманность, 700 с.л. ) в созвездии Водолея – красивейший «памятник» звезде типа нашего Солнца, погибшей десять тысяч лет назад

4-3. Туманность Кошачий глаз (3000 с.л. ) в созвездии Дракона –вид завершающего этапа эволюции звезды, похожей на наше Солнце, после того, как у неё закончится термоядерное топливо

4-4. Туманность Эскимос (3000 с.л.) в созвездии Близнецов. 10 тысяч лет назад на месте этой туманности была звезда, похожая на наше Солнце.

4-1. Жизненный цикл звезды в зависимости от её массы

Белый карлик получается из звезды типа нашего Солнца, причём без всякого взрыва. Это объект размером с Землю и массой, как у Солнца. Его плотность настолько высока, что электронные оболочки атомов разрушаются, и вещество становится электронно-ядерной плазмой. Один из первых известных белых карликов открыли, изучая самую яркую звезду ночного неба – Сириус. Оказалось, что его спутник белый, маленький и очень тяжёлый.

Если масса звезды больше солнечной в несколько раз, мощная гравитация превратит электроны и протоны в нейтроны, и сжатие пойдёт ещё дальше. При этом образуется нейтронная звезда – очень интересный объект со сверхвысокой температурой и плотностью, сверхмощными магнитными и гравитационными полями. Только представьте себе звезду с массой Солнца и радиусом всего 10 км, которая делает оборот вокруг своей оси за одну тысячную секунды!

4-5. Туманность Гомункул (8000 с.л.) - результат выброса вещества из звезды-сверхгиганта Эта Киля – самой большой из известных науке звёзд (120 масс Солнца и 240 его диаметров). В центре - фиолетовое свечение — отражение света Эты Киля. В течение нескольких миллионов лет она может взорваться как яркая сверхновая

Самые массивные звёзды превращаются в чёрные дыры. Гравитационное притяжение чёрной дыры настолько велико, что покинуть её не могут даже фотоны. У нас пока нет точной теории, полностью описывающей внутреннее строение чёрных дыр.

Большинство изображений космических объектов сделано совмещением данных, полученных оптическими, инфракрасными и рентгеновскими телескопами в искусственных цветах. Но каждая деталь этих завораживающих видов, хоть и не будет видна глазом даже с близкого расстояния, существует на самом деле.

5. Наша Галактика – одна из 100 миллиардов в видимой части Вселенной. Размер Галактики – около 100 тысяч световых лет. До ближайшей похожей галактики – около 2,5 миллиона световых лет .

5-3. Галактика Боде (12 млн световых лет от нас) в созвездии Большой Медведицы . В некоторых источниках пишут, что «очень опытный астроном-любитель при исключительно благоприятных условиях может увидеть эту галактику невооружённым глазом». В этом случае Галактика Боде может претендовать на роль самого дальнего объекта во Вселенной, который можно наблюдать без телескопа.

5-2. Галактика Треугольника (3 млн с.л.) – наш второй спиральный сосед. На врезке – самая большая в Местной группе галактик «звёздная колыбель»

5-1. Галактика Туманность Андромеды (2,5 млн световых лет от нас) – ближайшая к нам спиральная галактика

5-7. Группа взаимодействующих галактик Квинтет Стефана (300 млн с.л.) в созвездии Пегаса. Одна из галактик (справа вверху) находится гораздо ближе – около 40 млн с.л. – и не участвует во взаимодействии

5-4. Галактика Сигара расположена неподалёку от галактики Боде и, возможно, является её спутником. Необычные полярные выбросы вызываются взрывами сверхновых, которые происходят здесь примерно раз в десять лет

5-6. Галактика Веретено (44 млн с.л.) в созвездии Дракона повёрнута к нам ребром, что позволяет отчётливо видеть тёмные области космической пыли в галактической плоскости.

5-5. Взаимодействующие галактики Водоворот (23 млн с.л.) в созвездии Гончих Псов

Все звёзды, которые мы видим на небе – это звёзды нашей Галактики. Можно заметить, что есть туманная полоса Млечного Пути, которая тянется через всё небо. Она состоит из огромного количества звёзд. Все вместе они составляют нашу Галактику, в ней около 400 млрд звёзд. Кроме звёзд, Галактика состоит из газа и пыли, и, что важно, из тёмного вещества. Оно вносит основной вклад в массу вещества нашей Галактики. Размер Галактики достаточно велик, чтобы поместить все эти сотни миллиардов звёзд, расстояние между которыми измеряется световыми годами. Размер Галактики около 100 тысяч световых лет, то есть, от одного её края до другого свет будет идти примерно 100 тысяч лет.

Мы видим, как звёзды вращаются вблизи самого центра Галактики и можем вычислить, какая масса заставляет их вращаться именно по этим орбитам. Получается, что в самом центре Галактики, где не видно никакого яркого источника, есть нечто с массой 4 млн масс Солнца. И единственное здравое объяснение этому является то, что этот слабый и сверхмассивный объект – чёрная дыра.

5-8. Галактика Головастик (420 млн с.л.) в созвездие Дракона. Свой хвост космический головастик получил во время столкновения с соседней галактикой

Многое о нашей Галактике мы до сих пор не знаем, потому что мы не можем вылететь за её пределы и посмотреть на неё снаружи. Например, мы не знаем, сколько спиральных рукавов у Галактики. Зато мы знаем, что наша Галактика похожа на какие-то другие спиральные галактики, в частности, на нашу соседку – галактику Туманность Андромеды. Интересно, что в ярких спиральных рукавах звёзд примерно столько же, сколько и в тёмном пространстве между рукавами. Просто в рукавах активно образуются молодые яркие звёзды (и их хорошо видно), а между рукавами находятся слабые звёзды (которые видно плохо).

Галактики относятся к разным типам, но более или менее их можно разделить на три группы. Есть дисковые галактики, похожие на нашу. Очень часто в этих дисках возникают красивые спирали, которые мы все так любим рассматривать на фотографиях. Есть галактики эллиптические. Они могут выглядеть как сплюснутый шарик, состоящий из звёзд. И, наконец, есть галактики неправильные (иррегулярные). У них нет какой-то определённой формы. Как правило, эта иррегулярность связана с тем, что галактика очень лёгкая, и ей просто не хватило массы, чтобы выстроить свои звёзды в определённом порядке. Или эта галактика недавно взаимодействовала с другой галактикой сравнимой массы, поэтому её форма была существенно искажена. Галактики группируются в скопления, а в более крупном масштабе – в сверхскопления.

6. Планеты существуют не только вокруг Солнца, но и вокруг других звёзд. Их называют экзопланеты. Уже открыто более 3 тысяч экзопланет. Планетные системы могут сильно отличаться друг от друга

Важное недавнее открытие – обнаружение других планетных систем. Солнечная система оказалась не уникальной, вокруг других звёзд тоже есть планеты. Мы называем их «экзопланеты», и это тоже очень важная составляющая нашей Галактики. Теперь мы знаем, что, скорее, трудно найти звезду без планетной системы. Поэтому число планет в несколько раз превосходит число звёзд в Галактике, и можно уже говорить о тысячах миллиардов планет в нашей Галактике.

6-1. Тройная звезда Глизе Глизе 667 (23 с.л.) с планетами в зоне обитаемости и область активного звёздообразования Кошачья лапа (5500 с.л.) в созвездии Скорпиона.

6-2. Планетная система звезды HR 8799 (130 с.л.) в созвездии Пегаса. Составлен видеоряд движения планет, полученный за 7 лет наблюдений

Сейчас мы знаем более 3 тысяч экзопланет, и у нас есть более 20 тысяч кандидатов, из которых заметно больше половины окажутся подтверждёнными

Люди давно подозревали о существовании экзопланет, однако доказать это оказалось очень трудно. Случилось это в начале 1990-х годов, и последние двадцать с лишним лет мы наслаждаемся потоком открытий в области экзопланетной астрономии. Иногда мы непосредственно наблюдаем экзопланеты (даже целые системы экзопланет), видим, как они вращаются вокруг своих звёзд. Но всё-таки напрямую наблюдать экзопланеты трудно. И не потому, что они такие тусклые, а потому, что звёзды такие яркие. Люди научились регистрировать экзопланеты сразу несколькими способами. Так, спутник Кеплер одновременно следил за блеском около 200 тысяч звёзд. Когда планета пролетает точно между нами и своей звездой, Кеплер регистрирует падение блеска звезды. Второй способ состоит в том, что планета при движении вокруг звезды немного раскачивает её, заставляя вращаться вокруг центра масс всей системы. И, фиксируя параметры этого раскачивания, можно высчитать массу и период обращения этой планеты. Есть и другие методы обнаружения экзопланет.

7. Вселенная родилась около 14 миллиардов лет назад очень горячей и сверхплотной. В ходе расширения Вселенная остывала и становилась менее плотной, появились протоны, нейтроны, электроны. Затем возникли звёзды и галактики . 7-1. Основные этапы эволюции Вселенной 7-2. Основные события в истории Вселенной 7-4. Образование и схлопывание протогалактических облаков (рисунок) через миллиард лет после Большого взрыва 7-3. Согласно теории Большого взрыва, Вселенная в момент образования была в чрезвычайно плотном и горячем состоянии.

7. Вселенная родилась около 14 миллиардов лет назад очень горячей и сверхплотной. В ходе расширения Вселенная остывала и становилась менее плотной, появились протоны, нейтроны, электроны. Затем возникли звёзды и галактики .

7-1. Основные этапы эволюции Вселенной

7-2. Основные события в истории Вселенной

7-4. Образование и схлопывание протогалактических облаков (рисунок) через миллиард лет после Большого взрыва

7-3. Согласно теории Большого взрыва, Вселенная в момент образования была в чрезвычайно плотном и горячем состоянии.

Если бы Вселенная была бесконечна, стационарна и равномерно заполнена звёздами, то, куда бы мы ни смотрели, наш взгляд упирался бы в какую-нибудь звезду. И всё небо, даже ночью, сияло бы как поверхность Солнца. Это умозаключение известно как фотометрический парадокс (или парадокс Ольберса – по имени немецкого астронома, который обратил на него внимание в XIX веке). Может быть, ночью темно потому, что свет далёких звёзд закрывается облаками космической пыли? Нет. В силу закона сохранения энергии пыль сама должна нагреваться и светиться так же ярко, как звёзды. Теперь мы можем сказать, что небо «тёмное» и в рентгеновском диапазоне, и в инфракрасном, и в других лучах тоже.

Единственное решение парадокса Ольберса состоит в предположении, что звёзды где-то «заканчиваются». Причём, учитывая конечность скорости света (300 тысяч км/с), звёзды заканчиваются не в пространстве, а во времени. Вселенная имеет конечный возраст – около 13,7 млрд лет. Этот возраст установлен самыми разными способами, и все они дают сходный результат. Таким образом, мы не видим свет от звёзд, чей возраст превышал бы эти самые 13,7 млрд лет – потому что звёзд тогда вообще не было. Это и объясняет, почему ночью небо тёмное.

13,7 млрд лет назад произошло нечто, что мы называем Большим взрывом, в котором и родилась наша Вселенная. После этого она начала расширяться. Это наблюдательный факт. Вначале Вселенная была очень горячей и плотной. Мы видим излучение, которое приходит от этой ранней горячей Вселенной. Оно никуда не делось, просто остыло. Кстати, заметный процент «ряби» на пустом канале телевизора вызывается этим самым излучением. В какой-то момент горячее вещество Вселенной, как говорят, рекомбинировалось: электроны «прицепились» к ядрам. Наступили «тёмные времена»: это нейтральное вещество ничего не излучает, а звёзд ещё нет. Моделирование показывает, что там, где плотность вещества оказывалась чуть больше, возникали сгустки, облака, в которых со временем загорались самые первые звёзды. Эти сгустки притягивались друг к другу, образовывая первые галактики. Звёзды эволюционировали и взрывались, рождая самые первые чёрные дыры.

8. Нам доступна для наблюдений лишь часть Вселенной. За этой границей физический мир не заканчивается. Чем дальше объект, тем более раннее его прошлое мы видим.

Из-за конечного возраста наблюдаемой Вселенной и конечности скорости света нам приходится изучать Вселенную, наблюдая лишь малую её часть. Свет от более далёких объектов просто не успел к нам долететь. Но Вселенная больше, чем этот наблюдаемый участок. Но насколько больше, мы, к сожалению, сказать не можем.

8-1. Скопление галактик Abell 2218 (3 млрд св.л.) созвездии Дракона. Гравитация этого массивного и компактного скопления искривляет и фокусирует свет от галактик, находящихся далеко позади него. В результате многочисленные изображения этих фоновых галактик искажаются, превращаясь в длинные дуги. Подобный эффект можно увидеть, взглянув на уличные огни сквозь увеличительное стекло

8-3. Видимая Вселенная относительно земного наблюдателя. Рисунок в логарифмическом масштабе

8-2. На этом «экстремально глубоком снимке» участка неба в созвездие Печи – самые старые из всех наблюдаемых галактик. Они сформировались сразу после «тёмной эпохи», 13 млрд лет назад, когда возраст Вселенной составлял всего несколько процентов от его значения в наше время. Чтобы получить это изображение, были обработаны и сведены более 2000 фотографий, сделанных «Хабблом» за 10 лет

Далёкие объекты мы видим «в прошлом». Солнце мы видим таким, каким оно было примерно 8 минут назад. Глядя в телескоп на галактику Туманность Андромеды, расстояние до которой 2.5 млн световых лет, мы видим события, происходившие там 2,5 млн лет назад. А, наблюдая галактики, свет от которых шёл до нас 12 млрд лет, мы видим, что они ещё даже не успели объединиться в скопления. Таким образом, чем более далёкие объекты мы рассматриваем, тем глубже мы погружаемся в их прошлое.

9. Почти все химические элементы, из которых состоит всё вокруг, в том числе и мы сами, родились в звёздах в результате термоядерных реакций или при взрывах сверхновых. До образования звёзд Вселенная состояла из водорода и гелия.

Вселенная возникла горячей и плотной, после чего началось расширение. В горячем и плотном веществе не могут существовать сложные структуры. Вспомните окончание второй серии Терминатора, где Шварценеггер опускается в раскалённый металл. И в ранней Вселенной не могли существовать сложные структуры, в том числе, и ядра химических элементов, ядра атомов. В какой-то момент Вселенная остывает, становится менее плотной и возникает водород. Возникают нейтроны и протоны, и из них можно начать составлять другие ядра элементов. Но на это отводится очень мало времени – несколько минут. И расчёты показали, что дальше гелия продвинуться было очень трудно.

Звёзды эволюционируют, в них идут термоядерные реакции, в ходе которых могут образовываться элементы вплоть до элементов группы железа. Кстати, основной поставщик железа во Вселенной – белые карлики. Мы знаем, что ядра массивных звёзд состоят из железа, но это железо потом не выбрасывается, оно входит в состав нейтронных звёзд и чёрных дыр. А белые карлики взрываются целиком. Это термоядерный взрыв с полным разрушением звезды, и при этом выбрасывается много железа.

При взрывах сверхновых синтезируются ещё более тяжёлые элементы, и следующее поколение звёзд возникает уже обогащённое этими тяжёлыми элементами. С течением времени тяжёлых элементов во Вселенной становится всё больше, а водорода всё меньше. Тем не менее, бóльшая часть вещества Вселенной (не считая «тёмного вещества», о котором – чуть позже) всё равно остаётся в водороде, который никогда не попадёт в звёзды, потому что он рассеян в межгалактическом пространстве.

9-2. Крабовидная туманность (6,5 тысячи св.л.) в созвездии Тельца – результат взрыва сверхновой звезды, произошедшего в 1054 году. Согласно записям арабских и китайских астрономов, вспышка была видна невооружённым глазом даже днём. До сих пор газопылевые облака разлетаются со скоростью 1,5 тысячи километров в секунду. Их подсвечивает изнутри маленькая (25 км) нейтронная звезда, которая вращается со скоростью 30 оборотов в секунду

Таким образом, практически все химические элементы, с которыми мы сталкиваемся в жизни, в том числе и атомы в нашем теле, побывали внутри какой-нибудь звезды (а, скорее всего, внутри нескольких поколений звёзд).

9-1. Периодическая таблица. Разными цветами указано происхождение химических элементов

Таким образом, Вселенная возникает состоящей из водорода и гелия. Именно из этих двух элементов состояли первые поколения звёзд. Опять же, если вы пишете научно-фантастический роман, не заставляйте вашего героя рождаться через 100 млн лет после Большого взрыва, потому что тогда он должен быть из водорода и гелия

10. Обычного вещества во Вселенной всего несколько процентов. 25% плотности Вселенной связано с тёмным веществом, а 70% – с тёмной энергией. Из-за тёмной энергии Вселенная расширяется всё быстрее

Вселенная состоит не только из «обычного вещества», входящего в таблицу Менделеева. Современные исследования показывают, что на обычное вещество приходится около 5% от полной плотности Вселенной. 95% определяется чем-то другим. Чем – достоверно мы не знаем, но есть очень хорошая гипотеза. Скорее всего, основной вклад в массу галактик и скоплений галактик вносит тёмное вещество. Его примерно в пять раз больше, чем обычного, то есть оно отвечает за 25% полной плотности Вселенной. Это какой-то вид элементарных частиц, не входящих в Стандартную модель. Это вещество может собираться в кучу, поэтому мы можем сказать: вот галактика, вот гало тёмной материи вокруг неё, здесь тёмной материи больше, а здесь её меньше. Точно так же тёмной материи много в скоплениях галактик, и мало между скоплениями, например, в войдах (войд – пространство между волокнами крупномасштабной структуры, в котором почти отсутствуют галактики и скопления).

10-1. Компьютерное моделирование крупномасштабной структуры Вселенной. Желтый – «обычное» вещество (звёзды, галактики, газ и пр.), фиолетовый – тёмная материя

10-2. В 6 млрд световых лет от нас в созвездии Кита наблюдаем результат столкновения двух гигантских скоплений галактик. Они двигались навстречу друг другу со скоростью несколько тысяч км/сек – одно с левой стороны снимка, другое – с правой. Молекулы газа скоплений столкнулись и замедлились. Эта «куча» газа показана розовым пятном в центре снимка. А частицы тёмной материи обоих скоплений продолжили своё движение как ни в чём не бывало и сейчас разлетаются в противоположных направлениях (пятна синего цвета). Изучение последствий таких грандиозных космических катаклизмов позволит уточнить свойства тёмной материи, о которых пока мало что известно

С чем же связаны оставшиеся 70%? Сейчас мы думаем, что они связаны с тёмной энергией. В конце 1990-х годов было обнаружено, что наша Вселенная расширяется всё быстрее и быстрее. Причём первые несколько миллиардов лет Вселенная расширялась с замедлением, как мы могли бы и ожидать, а потом вдруг начала расширяться всё быстрее и быстрее. Есть какая-то дополнительная составляющая во Вселенной, которая заставляет галактики отталкиваться и удаляться друг от друга. Для того, чтобы описать этот эффект, и понадобилась эта самая тёмная энергия. Используя данные наблюдения, мы можем посчитать, сколько тёмной энергии нужно, чтобы описать тот мир, который открывают нам астрономические приборы. И оказывается, что тёмная энергия должна отвечать за 70% полной плотности Вселенной.

Заключение  Итак, мы увидели, что Вселенная устроена, с одной стороны, достаточно просто, чтобы все основные факты о ней можно было быстро перечислить. А, с другой стороны, Вселенная устроена достаточно многообразно, поскольку про каждый упомянутый нами факт можно писать целые книжки. Мы увидели также два больших белых пятна: у нас нет прямых данных о тёмной материи и нет прямых данных о тёмной энергии. Но мы надеемся, что в течение ближайших лет (а, может, десятков лет) мы сможем существенно дополнить астрономическую картину мира.

Заключение

Итак, мы увидели, что Вселенная устроена, с одной стороны, достаточно просто, чтобы все основные факты о ней можно было быстро перечислить. А, с другой стороны, Вселенная устроена достаточно многообразно, поскольку про каждый упомянутый нами факт можно писать целые книжки. Мы увидели также два больших белых пятна: у нас нет прямых данных о тёмной материи и нет прямых данных о тёмной энергии. Но мы надеемся, что в течение ближайших лет (а, может, десятков лет) мы сможем существенно дополнить астрономическую картину мира.


Получите в подарок сайт учителя

Предмет: Астрономия

Категория: Презентации

Целевая аудитория: 11 класс.
Урок соответствует ФГОС

Скачать
Презентация "Как устроена Вселенная"

Автор: Зайцева Светлана Михайловна

Дата: 01.12.2022

Номер свидетельства: 618907

Похожие файлы

object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(89) "Конспект урока по природоведению наша вселенная"
    ["seo_title"] => string(55) "konspiekt_uroka_po_prirodoviedieniiu_nasha_vsieliennaia"
    ["file_id"] => string(6) "371887"
    ["category_seo"] => string(7) "prochee"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1482254025"
  }
}
object(ArrayObject)#873 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(101) "Урок по окружающему миру на тему"Голубая планета Земля""
    ["seo_title"] => string(65) "urok_po_okruzhaiushchiemu_miru_na_tiemu_golubaia_planieta_ziemlia"
    ["file_id"] => string(6) "369621"
    ["category_seo"] => string(16) "nachalniyeKlassi"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1481720329"
  }
}
object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(94) "Экологические проблемы. Критериальное оценивание. "
    ["seo_title"] => string(57) "ekologhichieskiie-probliemy-kritierial-noie-otsienivaniie"
    ["file_id"] => string(6) "185905"
    ["category_seo"] => string(15) "angliiskiyYazik"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1426253285"
  }
}
object(ArrayObject)#873 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(98) "литературное чтение Сочинение "Зелёное платье Земли" "
    ["seo_title"] => string(63) "litieraturnoie-chtieniie-sochinieniie-zielionoie-plat-ie-ziemli"
    ["file_id"] => string(6) "170331"
    ["category_seo"] => string(16) "nachalniyeKlassi"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1423545644"
  }
}
object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(139) "Разработка с презентацией классного часа "О! Книга" для учащихся 7 - 8 классов "
    ["seo_title"] => string(87) "razrabotka-s-priezientatsiiei-klassnogho-chasa-o-knigha-dlia-uchashchikhsia-7-8-klassov"
    ["file_id"] => string(6) "126589"
    ["category_seo"] => string(10) "vneurochka"
    ["subcategory_seo"] => string(12) "meropriyatia"
    ["date"] => string(10) "1415199039"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1500 руб.
2500 руб.
1270 руб.
2110 руб.
1390 руб.
2320 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства