kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Презентация по астрономии "Солнце. Строение. Состав атмосферы".

Нажмите, чтобы узнать подробности

Презентацию можно использовать как при изучении нового материала, так и при повторении.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Презентация по астрономии "Солнце. Строение. Состав атмосферы".»

СОЛНЦЕ:   СОСТАВ  И ВНУТРЕННЕЕ СТРОЕНИЕ

СОЛНЦЕ: СОСТАВ И ВНУТРЕННЕЕ СТРОЕНИЕ

Солнце  – центральное тело Солнечной системы –  является типичным представителем звезд, наиболее распространенных во Вселенной тел .

Солнце – центральное тело Солнечной системы –

является типичным представителем звезд,

наиболее распространенных во Вселенной тел .

  • Масса Солнца = 99,866 % от массы всей Солнечной системы (2•10 30 кг, 332 982 масс Земли )
  •   Видимый угловой диаметр  — 31 '31'' в январе,
  • 32 '31'' в июле
  • Средний диаметр 1,392·10 9  м (109 диаметров Земли)
  • Средняя плотность   1409 кг/м³ (плотность воды в Мёртвом море)
  • давление равно примерно 6,6•10 1 8 Па, т. е.
  • в 1 млрд раз превосходит нормальное атмосферное давление .
  • Солнце теряет в секунду 4 млн. т своего вещества
  • Ускорение свободного падения 274,0 м/с²   (27,96  g )
Солнце излучает в космическое пространство колоссальный по мощности поток излучения, который в значительной мере определяет физические условия на Земле и других планетах, а также в межпланетном пространстве.  Земля получает всего лишь одну двухмиллиардную долю солнечного излучения. Однако и этого достаточно, чтобы приводить в движение огромные массы воздуха в земной атмосфере, управлять погодой и климатом на земном шаре.

Солнце излучает в космическое пространство колоссальный по мощности поток излучения, который в значительной мере определяет физические условия на Земле и других планетах, а также в межпланетном пространстве.

Земля получает всего лишь одну двухмиллиардную долю солнечного излучения. Однако и этого достаточно, чтобы приводить в движение огромные массы воздуха в земной атмосфере, управлять погодой и климатом на земном шаре.

Большинство источников энергии, которые использует человечество, связаны с Солнцем. Тепло и свет Солнца обеспечили развитие жизни на Земле, формирование месторождений угля , нефти и газа .

Большинство источников энергии, которые использует человечество, связаны с Солнцем.

Тепло и свет Солнца обеспечили развитие жизни на Земле, формирование месторождений угля , нефти и газа .

Как и многие другие звезды, Солнце представляет собою огромный шар, который состоит из водородно-гелиевой плазмы и находится в равновесии в поле собственного тяготения .

Как и многие другие звезды, Солнце представляет собою огромный шар, который состоит из водородно-гелиевой плазмы

и находится в равновесии в поле собственного тяготения .

Вращение Солнца по зонам  (определяется по изменению положения пятен) Период вращения на экваторе 25,05 дней, на полюсе 34,3 дней

Вращение Солнца по зонам (определяется по изменению положения пятен)

  • Период вращения

на экваторе 25,05 дней,

на полюсе 34,3 дней

  • Скорость вращения видимых слоев на экваторе7284 км/ч
Для изучения Солнца используются телескопы особой конструкции – башенные солнечные телескопы . Система зеркал непрерывно поворачивается вслед за Солнцем и направляет его лучи вниз на главное зеркало, а затем они попадают в спектрографы или другие приборы, с помощью которых проводятся исследования Солнца. Башенный солнечный телескоп Крымской астрофизической обсерватории БСТ-1 (1957 г.)

Для изучения Солнца используются телескопы особой конструкции – башенные солнечные телескопы .

Система зеркал непрерывно поворачивается вслед за Солнцем и направляет его лучи вниз на главное зеркало, а затем они попадают в спектрографы или другие приборы, с помощью которых проводятся исследования Солнца.

Башенный солнечный телескоп Крымской астрофизической обсерватории БСТ-1 (1957 г.)

Благодаря большому фокусному расстоянию солнечных телескопов (до 90 м) можно получить изображение Солнца диаметром до 80 см и детально изучать происходящие на нем явления. Они лучше видны на спектрогелиограммах – снимках Солнца, которые сделаны в лучах, соответствующих спектральным линиям водорода, кальция и некоторых других элементов. Солнце в красных лучах излучения водорода Солнце в ультрафиолетовых лучах Солнце в рентгеновских лучах

Благодаря большому фокусному расстоянию солнечных телескопов (до 90 м) можно получить изображение Солнца диаметром до 80 см и детально изучать происходящие на нем явления.

Они лучше видны на спектрогелиограммах – снимках Солнца, которые сделаны в лучах, соответствующих спектральным линиям водорода, кальция и некоторых других элементов.

Солнце в красных лучах излучения водорода

Солнце в ультрафиолетовых лучах

Солнце в рентгеновских лучах

Важнейшую информацию о физических процессах на Солнце дает спектральный анализ . 1814 год. Йозеф Фраунгофер описал линии поглощения для определения состава атмосферы Солнца.  В настоящее время в солнечном спектре зарегистрировано более 30000 линий, принадлежащих 72 химическим элементам.   Йозеф Фраунгофер Солнечный спектр Спектральными методами гелий (от греч. «гелиос» – солнечный) был сначала открыт на Солнце и лишь затем обнаружен на Земле. Солнце состоит из водорода (~70 %), гелия  (~28 %) и других элементов  (2%): железа , никеля, кислорода , азота , кремния , серы , магния , углерода , неона , кальция  и хрома. На 1 млн атомов водорода приходится 98 000 атомов гелия, 851 атом кислорода, 398 атомов углерода, 123 атома неона, 100 атомов азота, 47 атомов железа, 38 атомов магния, 35 атомов кремния, 16 атомов серы, 4 атома аргона, 3 атома алюминия, по 2 атома никеля, натрия и кальция, прочих элементов.

Важнейшую информацию о физических процессах на Солнце дает спектральный анализ .

1814 год. Йозеф Фраунгофер описал линии поглощения для определения состава атмосферы Солнца.

В настоящее время в солнечном спектре зарегистрировано более 30000 линий, принадлежащих 72 химическим элементам.

Йозеф Фраунгофер

Солнечный спектр

Спектральными методами гелий (от греч. «гелиос» – солнечный) был сначала открыт на Солнце и лишь затем обнаружен на Земле.

Солнце состоит из водорода (~70 %), гелия  (~28 %) и других элементов  (2%): железа , никеля, кислорода , азота , кремния , серы , магния , углерода , неона , кальция  и хрома.

На 1 млн атомов водорода приходится 98 000 атомов гелия, 851 атом кислорода, 398 атомов углерода, 123 атома неона, 100 атомов азота, 47 атомов железа, 38 атомов магния, 35 атомов кремния, 16 атомов серы, 4 атома аргона, 3 атома алюминия, по 2 атома никеля, натрия и кальция, прочих элементов.

Вещество Солнца сильно ионизовано : атомы, потерявшие электроны своих внешних оболочек и ставшие ионами, вместе со свободными электронами образуют плазму . Диаграмма химического состава Солнца Средняя плотность солнечного вещества примерно 1400 кг/м 3 . Она соизмерима с плотностью воды и в 1000 раз больше плотности воздуха у поверхности Земли.

Вещество Солнца сильно ионизовано : атомы, потерявшие электроны своих внешних оболочек и ставшие ионами, вместе со свободными электронами образуют плазму .

Диаграмма химического состава Солнца

Средняя плотность солнечного вещества примерно 1400 кг/м 3 . Она соизмерима с плотностью воды и в 1000 раз больше плотности воздуха у поверхности Земли.

Используя закон всемирного тяготения и газовые законы, можно рассчитать условия внутри Солнца, построить модель «спокойного» Солнца.  Оно находится в равновесии, поскольку в каждом его слое действие сил тяготения, которые стремятся сжать Солнце, уравновешивается действием сил внутреннего давления газа. Действием гравитационных сил в недрах Солнца создается огромное давление.

Используя закон всемирного тяготения и газовые законы, можно рассчитать условия внутри Солнца, построить модель «спокойного» Солнца.

Оно находится в равновесии, поскольку в каждом его слое действие сил тяготения, которые стремятся сжать Солнце, уравновешивается действием сил внутреннего давления газа.

Действием гравитационных сил в недрах Солнца создается огромное давление.

Состав и строение Солнца

Состав и строение Солнца

Из недр Солнца наружу энергия передается двумя способами: излучением ,  т. е. самими квантами, и конвекцией , т. е. веществом.

Из недр Солнца наружу энергия передается двумя способами:

излучением ,

т. е. самими квантами, и конвекцией ,

т. е.

веществом.

При высокой температуре в центральной части Солнца протоны имеют столь большие скорости, что могут преодолеть электростатические силы отталкивания и взаимодействовать между собой. Трехступенчатый процесс: Два протона сталкиваются, производят дейтерий, позитрон и нейтрино. Протон сталкивается с дейтерием, образуется ядро гелия-3 и гамма-квант. Два ядра гелия-3 образуют ядро гелия-4 и два протона. ядро –происходит реакция превращения водорода в гелий По мере удаления от центра плотность и температура уменьшаются, ядерные реакции почти полностью прекращаются за внешней границей ядра (~175 000 км)

При высокой температуре в центральной части Солнца протоны имеют столь большие скорости, что могут преодолеть электростатические силы отталкивания и взаимодействовать между собой.

Трехступенчатый процесс:

  • Два протона сталкиваются, производят дейтерий, позитрон и нейтрино.
  • Протон сталкивается с дейтерием, образуется ядро гелия-3 и гамма-квант.
  • Два ядра гелия-3 образуют ядро гелия-4 и два протона.

ядро –происходит реакция превращения водорода в гелий

По мере удаления от центра плотность и температура уменьшаются, ядерные реакции почти полностью прекращаются за внешней границей ядра (~175 000 км)

Над ядром, на расстояниях около 0,3—0,7 радиуса Солнца от его центра, находится зона лучистого переноса, в которой отсутствуют макроскопические движения, энергия переносится с помощью переизлучения фотонов. Произведенные в ядре фотоны движутся в лучистой зоне, сталкиваясь с частицами плазмы. В результате, хотя скорость фотонов равна скорости света, они сталкиваются и переизлучаются так много раз, что требуется около миллиона лет, прежде чем отдельный фотон  достигнет верхней границы лучистой зоны и покинет ее. Температура падает от 7 млн. до 2 млн. « лучистая» зона получила название от способа, которым осуществляется перенос энергии от ядра к поверхности – через излучение.

Над ядром, на расстояниях около 0,3—0,7 радиуса Солнца от его центра, находится зона лучистого переноса, в которой отсутствуют макроскопические движения, энергия переносится с помощью переизлучения фотонов.

Произведенные в ядре фотоны движутся в лучистой зоне, сталкиваясь с частицами плазмы. В результате, хотя скорость фотонов равна скорости света, они сталкиваются и переизлучаются так много раз, что требуется около миллиона лет, прежде чем отдельный фотон достигнет верхней границы лучистой зоны и покинет ее. Температура падает от 7 млн. до 2 млн.

« лучистая» зона получила название от способа, которым осуществляется перенос энергии от ядра к поверхности – через излучение.

Ближе к поверхности Солнца возникает вихревое перемешивание плазмы, и перенос энергии к поверхности совершается преимущественно движениями самого вещества. Такой способ передачи энергии называется конвекцией, а подповерхностный слой Солнца, толщиной примерно 200 000 км, где она происходит — конвективной зоной. Поднимающееся вещество расширяется и охлаждается, плотность становится равной 0,0000002 г / см3 (около одной десятитысячной от плотности воздуха на уровне моря). Конвективные движения плазмы видны на ее поверхности как гранулы и супергранулы . конвективная зона: энергия от слоя к слою переносится самим веществом в результате перемешивания (конвекции). По современным данным, её роль в физике солнечных процессов исключительно велика, так как именно в ней зарождаются разнообразные движения солнечного вещества и магнитные поля.

Ближе к поверхности Солнца возникает вихревое перемешивание плазмы, и перенос энергии к поверхности совершается преимущественно движениями самого вещества. Такой способ передачи энергии называется конвекцией, а подповерхностный слой Солнца, толщиной примерно 200 000 км, где она происходит — конвективной зоной.

Поднимающееся вещество расширяется и охлаждается, плотность становится равной 0,0000002 г / см3 (около одной десятитысячной от плотности воздуха на уровне моря). Конвективные движения плазмы видны на ее поверхности как гранулы и супергранулы .

конвективная зона: энергия от слоя к слою переносится самим веществом в результате перемешивания (конвекции).

По современным данным, её роль в физике солнечных процессов исключительно велика, так как именно в ней зарождаются разнообразные движения солнечного вещества и магнитные поля.

Внутреннее строение Солнца

Внутреннее строение Солнца

Выделение энергии и ее перенос определяют внутреннее строение Солнца: Каждая из этих зон занимает примерно 1/3 солнечного радиуса.

Выделение энергии и ее перенос определяют внутреннее строение Солнца:

Каждая из этих зон занимает примерно 1/3 солнечного радиуса.

Атмосфера Солнца Верхние слои атмосферы непосредственно не видны и могут наблюдаться либо во время полных солнечных затмений, либо из космического пространства

Атмосфера Солнца

Верхние слои атмосферы непосредственно не видны и могут наблюдаться либо во время полных солнечных затмений, либо из космического пространства

Фотосфера Солнца Фотосфера (слой, излучающий свет) образует видимую поверхность Солнца, от которой определяются размеры Солнца, расстояние от поверхности Солнца и т. д. Температура в фотосфере достигает в среднем 5800 К. Здесь средняя плотность газа составляет менее 1/1000 плотности земного воздуха. Фотосферу, толщиной 200 км, наблюдаем как резко очерченный солнечный диск. Температура -6000°С. Фотосфера имеет зернистое строение и похожа на кипящую рисовую кашу, только размер каждого такого зернышко гранулы составляет около тысячи километров. Светлые гранулы это горячее вещество, поднимающееся вверх из недр Солнца, атомные — холодное вещество, опускающееся вниз .

Фотосфера Солнца

Фотосфера (слой, излучающий свет) образует видимую поверхность Солнца, от которой определяются размеры Солнца, расстояние от поверхности Солнца и т. д. Температура в фотосфере достигает в среднем 5800 К. Здесь средняя плотность газа составляет менее 1/1000 плотности земного воздуха.

Фотосферу, толщиной 200 км, наблюдаем как резко очерченный солнечный диск. Температура -6000°С. Фотосфера имеет зернистое строение и похожа на кипящую рисовую кашу, только размер каждого такого зернышко гранулы составляет около тысячи километров. Светлые гранулы это горячее вещество, поднимающееся вверх из недр Солнца, атомные — холодное вещество, опускающееся вниз .

Хромосфера Хромосфера- внешняя оболочка Солнца толщиной около 10 000 км, окружающая фотосферу. Происхождение названия этой части солнечной атмосферы связано с её красноватым цветом. Верхняя граница хромосферы не имеет выраженной гладкой поверхности, из неё постоянно происходят горячие выбросы, называемые спикулами. Температура хромосферы увеличивается с высотой от 4000 до 15 000 градусов . Слой, в котором происходят быстрые конвективные движения газов, поднимающихся вверх и опускающихся вниз.

Хромосфера

Хромосфера- внешняя оболочка Солнца толщиной около 10 000 км, окружающая фотосферу. Происхождение названия этой части солнечной атмосферы связано с её красноватым цветом. Верхняя граница хромосферы не имеет выраженной гладкой поверхности, из неё постоянно происходят горячие выбросы, называемые спикулами. Температура хромосферы увеличивается с высотой от 4000 до 15 000 градусов .

Слой, в котором происходят быстрые конвективные движения газов, поднимающихся вверх и опускающихся вниз.

Корона Корона — последняя внешняя оболочка Солнца. Несмотря на её очень высокую температуру, от 600 000 до 5 000 000 градусов, она видна невооружённым глазом только во время полного солнечного затмения.

Корона

Корона — последняя внешняя оболочка Солнца. Несмотря на её очень высокую температуру, от 600 000 до 5 000 000 градусов, она видна невооружённым глазом только во время полного солнечного затмения.

Солнечный ветер Многие природные явления на Земле связаны с возмущениями в солнечном ветре, в том числе геомагнитные бури и полярные сияния.

Солнечный ветер

Многие природные явления на Земле связаны с возмущениями в солнечном ветре, в том числе геомагнитные бури и полярные сияния.

Активные образования

Активные образования

Солнечные пятна - это регионы магнитных полей, вырывающихся на поверхность и исчезающих через несколько часов или растущих и существующих месяцами в 11-летнем цикле активности Солнца. Причина: магнитное поле подавляет конвективные движения вещества, поэтому снижается поток переноса тепловых энергий Известны периоды, когда Солнце вообще не имело пятен. Это случалось два раза: первый раз (минимум Шперера) с 1400 года по 1510 год, второй (минимум Маундера) – с 1645 года по 1715 год.

Солнечные пятна - это регионы магнитных полей, вырывающихся на поверхность и исчезающих через несколько часов или растущих и существующих месяцами в 11-летнем цикле активности Солнца.

Причина: магнитное поле подавляет конвективные движения вещества, поэтому снижается поток переноса тепловых энергий

Известны периоды, когда Солнце вообще не имело пятен. Это случалось два раза: первый раз (минимум Шперера) с 1400 года по 1510 год, второй (минимум Маундера) – с 1645 года по 1715 год.

Вспышки на Солнце — это самые большие взрывы в Солнечной системе.  Вспышки затрагивают все слои атмосферы. Они бывают и в фотосфере, и в хроносфере, и в солнечной короне. За несколько минут вспышки высвобождается энергия в миллиарды мегатонн, если исчислять её в тротиловом эквиваленте. Выделенная энергия – это электромагнитное и корпускулярное излучения. Они превращаются в потоки, называемые солнечным ветром. Это очень ионизированные частицы, мчащиеся со скоростями 300-1200 км/с. До Земли они добираются за двое-трое суток.

Вспышки на Солнце это самые большие взрывы в Солнечной системе. Вспышки затрагивают все слои атмосферы. Они бывают и в фотосфере, и в хроносфере, и в солнечной короне. За несколько минут вспышки высвобождается энергия в миллиарды мегатонн, если исчислять её в тротиловом эквиваленте. Выделенная энергия – это электромагнитное и корпускулярное излучения. Они превращаются в потоки, называемые солнечным ветром. Это очень ионизированные частицы, мчащиеся со скоростями 300-1200 км/с. До Земли они добираются за двое-трое суток.

Протуберанцы Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млн км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Протуберанцы

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млн км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Строение атмосферы Солнца Фотосфера Условие наблюдения Хромосфера Видимая сфера   Внешний вид Полное солнечное затмение Физические характеристики Сфера света Солнечная корона Полное солнечное затмение   Наблюдаемые образования Высота 200-300 км Температура 4000-8000 К Розовая каёмка Высота 10-14 тыс.км Температура 5000-50 000К Пятна Факелы Лучистое жемчужное сияние Вспышки (быстрое увеличение яркости участка) Температура 2 000 000К Протуберанцы Солнечный ветер

Строение атмосферы Солнца

Фотосфера

Условие наблюдения

Хромосфера

Видимая сфера

Внешний вид

Полное солнечное затмение

Физические характеристики

Сфера света

Солнечная корона

Полное солнечное затмение

Наблюдаемые образования

Высота 200-300 км

Температура 4000-8000 К

Розовая каёмка

Высота 10-14 тыс.км

Температура 5000-50 000К

Пятна

Факелы

Лучистое

жемчужное сияние

Вспышки (быстрое увеличение яркости участка)

Температура

2 000 000К

Протуберанцы

Солнечный ветер


Получите в подарок сайт учителя

Предмет: Астрономия

Категория: Презентации

Целевая аудитория: 11 класс.
Урок соответствует ФГОС

Скачать
Презентация по астрономии "Солнце. Строение. Состав атмосферы".

Автор: Зайцева Светлана Михайловна

Дата: 27.09.2019

Номер свидетельства: 521125


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства