kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Методические рекомендации по подготовке к ЕГЭ. Трудные задания части 2, линия 27 по биологии.

Нажмите, чтобы узнать подробности

Методические рекомендации по биологии для подготовки к ЕГЭ по биологии для учителей и учащихся.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Методические рекомендации по подготовке к ЕГЭ. Трудные задания части 2, линия 27 по биологии.»

Управление образования администрации города Ульяновска

Муниципальное бюджетное общеобразовательное учреждение

«Средняя школа № 31 имени Героев Свири»





















Методические рекомендации по подготовке к ЕГЭ. Трудные задания части 2, линия 27 по биологии.





Учебно – методическое

пособие





Автор-составитель: Майоров

Иван Дмитриевич,

Заслуженный учитель РФ,

учитель биологии высшей

квалификационной категории.




г.Ульяновск – 2017.

Содержание

Введение…..………………………………………………………………..


3

Раздел 1. Молекулярная биология и генетика……………………...........


4

Раздел 2. Решение и оформление задач по молекулярной биологии….


10

Глава 1.Типы задач по молекулярной биологии…………………… …..


10

1.1.1.Решение задач первого типа. Определение процентного

содержания нуклеотидов в ДНК…………………………………………


11

1.1.2.Решение задач второго типа. Определение количества

аминокислот в белке, нуклеотидов и триплетов в ДНК и РНК……


12

1.1.3.Решение задач третьего типа. Определение последователь-

ности аминокислотного состава белка с использованием генетичес-

кого кода…………………………………………………………………..



13

1.1.4.Решение задач четвертого типа. Определение антикодона –

т РНК, последовательности аминокислотного состава белка

с использованием генетического года………………………………….



15

1.1.5.Решение задач пятого типа. Определение нуклеотид-

ной последовательности – т РНК, аминокислоты переносимой

т-РНК с использованием генетического года…………………………



17

Раздел 3. Задачи для самостоятельного решения………………… .…

18


Раздел 4. Критерии проверки и оценки выполнения заданий…… .

23


Приложение. Таблица. Генетический код…………………………... ….

30


Литература……………………………………………………………. …..

31





Введение

Единый государственный экзамен по биологии проводится в целях определения уровня биологической подготовки выпускников и их отбора для поступления в образовательные учреждения среднего профессионального и высшего профессионального образования. Экзамен по биологии относится к числу экзаменов по выбору и ориентирован как на профильный, так и на базовый уровень Федерального компонента государственного образовательного стандарта среднего (полного) общего образования 2004 г.

Биологическое образование как важный компонент системы общего образования вносит вклад в формирование научного мировоззрения, гигиенических норм и правил здорового образа жизни, экологической грамотности школьников, их общекультурную подготовку. Эти важные проблемы находят отражение в экзаменационной работе ЕГЭ, включающей задания стандартизированной формы – контрольные измерительные материалы (КИМ). Задания экзаменационной работы содержат сведения о достижениях биологической науки на современном этапе: молекулярной биологии, генной и клеточной инженерии, а также вопросы сохранения биоразнообразия как основы устойчивого развития биосферы, экологических закономерностях и глобальных изменениях на планете и др. Это свидетельствует о достаточно высоком уровне требований к биологической подготовке выпускников, что особенно важно в условиях конкуренции на рынке образовательных услуг. Анализ результатов ЕГЭ по биологии за последние 9 лет позволяет сделать определенные выводы.

• Не все участники экзамена умеют четко формулировать свои мысли и обосновывать выводы.

• Много затруднений возникает у учащихся при работе с рисунками, схемами и текстом.

• У учащихся имеются затруднения при выполнении заданий из области цитологии, молекулярной биологии и генетики, что связано с недостаточным пониманием структуры и принципов реализации наследственной информации.

Выявленные недостатки подготовки выпускников оказались следствием недостаточного знания фактов, слабых навыков анализа, обобщения и синтеза информации.

В школьном курсе общей биологии разделы «Молекулярная биология» и «Генетика» являются наиболее сложными для понимания. Облегчению усвоения этих разделов может способствовать решение задач по молекулярной биологии и генетике разных уровней сложности.

Использование таких задач развивает у обучающихся логическое мышление, позволяет им глубже понять учебный материал по этой теме, дает возможность преподавателям осуществлять эффективный контроль уровня усвоенных знаний.

В сборник включены как типовые задачи по молекулярной биологии, так и задачи повышенного уровня сложности.

В предлагаемом пособии рассматриваются общие принципы решения и оформления задач по молекулярной биологии, предлагаются методические приемы, облегчающие решение.

Значительную часть настоящего сборника занимают задачи, которые чаще всего встречаются в тестах ЕГЭ, что поможет обучающимся разобраться с наиболее сложными заданиями и узнать объективный уровень своих знаний.

Для обучающихся, работающих самостоятельно по данному пособию включен теоретический материал по разделу «Молекулярная биология».

Методическое пособие может быть использовано обучающимися и преподавателями общеобразовательных школ, учебных заведений системы СПО при подготовке к ЕГЭ по биологии, в качестве учебного пособия при проведении спецкурсов, факультативов, а также для самоподготовки и самоконтроля учащихся 11 классов.


Раздел 1.МОЛЕКУЛЯРНАЯ БИОЛОГИЯ И ГЕНЕТИКА

В 1869 г. швейцарский биохимик Иоганн Фридрих Мишер впервые обнаружил, выделил из ядер клеток и описал ДНК. Но только в 1944 г. О. Эйвери, С. Маклеодом и М. Макарти была доказана генетическая роль ДНК, т. е. было достоверно установлено, что передача наследственной информации связана с дезоксирибонуклеиновой кислотой. Это открытие явилось мощным фактором, стимулирующим изучение наследственности на молекулярном уровне. С тех пор началось бурное развитие молекулярной биологии и генетики.

Нуклеиновые кислоты (от лат. nucleus - ядро) - это природные высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах. В их состав входят: углерод (С), водород (Н), кислород (О), фосфор (Р). Нуклеиновые кислоты представляют собой нерегулярные биополимеры, состоящие из мономеров - нуклеотидов. В состав каждого нуклеотида входят:

 азотистое основание,

 простой углерод - 5-углеродный сахар пентоза (рибоза или дезоксирибоза),

 остаток фосфорной кислоты.

Существует два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота - ДНК, содержащая дезоксирибозу, и рибонуклеиновая кислота - РНК, содержащая рибозу.

Рассмотрим каждый тип нуклеиновых кислот.

ДНК содержится почти исключительно в ядре клетки, иногда в органоидах: митохондриях, пластидах. ДНК - это полимерное соединение с постоянным (стабильным) содержанием в клетке.

Строение ДНК. По своей структуре молекула ДНК представляет собой две полимерные цепи, соединенные между собой и закрученные в форме двойной спирали (рис. 1).

Создана модель структуры ДНК в 1953 г. Д. Уотсоном и Ф. Криком, за что оба были удостоены Нобелевской премии. Ширина двойной спирали всего около 0,002 мкм (20 ангстрем), зато длина ее исключительно велика - до нескольких десятков и даже сотен микрометров (для сравнения: дли­на самой крупной белковой молекулы в развернутом виде не превышает 0,1 мкм).

Нуклеотиды расположены друг от друга на расстоянии - 0,34 нм, а на один виток спирали приходится 10 нуклеотидов. Молекулярная масса ДНК велика: она составляет десятки, и даже сотни миллионов. Например, молекулярная масса r) самой крупной хромосомы дрозофилы равна 7,9 • 1010.

Основной структурной единицей одной цепи является нуклеотид, состоящий из азотистого основания, дезоксирибозы и фосфатной группы. ДНК содержит 4 вида азотистых оснований:

 пуриновые - аденин (А) и гуанин (Г),

 пиримидиновые - цитозин (Ц) и тимин (Т).

Суммарное количество пуриновых оснований равно сумме пиримидиновых.

Нуклеотиды ДНК тоже будут 4 видов соответственно: адениловый (А), гуаниловый (Г), цитидиловый (Ц) и тимидиловый (Т), Все нуклеотиды ДНК соединены в полинуклеотидную цепь за счет остатков фосфорных кислот, расположенных между дезоксирибозами. В полинуклеотидной цепи может быть до 300 000 и более нуклеотидов.

Таким образом, каждая цепь ДНК представляет полинуклеотид, в котором в строго определенном порядке расположены нуклеотиды. Азотистые основания подходят друг к другу настолько близко, что между ними возникают водородные связи. Четко проявляется в их расположении важная закономерность: аденин (А) одной цепи связан с тимином (Т) другой цепи двумя водородными связями, а гуанин (Г) одной цепи связан тремя водородными связями с цитозином (Ц) другой цепи, в результате чего формируются пары А-Т и Г-Ц. Такая способность к избирательному соединению нуклеотидов называется комплементарностью, т. е. пространственное и химическое соответствие между парами нуклеотидов (см. рис. 2).

Последовательность соединения нуклеотидов одной цепи противоположна (комплементарна) таковой в другой, т. е. цепи, составляющие одну молекулу ДНК, разнонаправлены, или антипараллельны. Цепи закручиваются вокруг друг друга и образуют двойную спираль. Большое число водородных связей обеспечивает прочное соединение нитей ДНК и придает молекуле устойчивость, сохраняя в то же время ее подвижность - под влиянием ферментов она легко раскручивается (деспирализуется).

Репликация ДНК (редупликация ДНК) - процесс самовоспроизведения (самоудвоения) макромолекул нуклеиновых кислот, обеспечивающий точное копирование генетической информации и передачу ее от поколения к поколению.

Репликация ДНК происходит в период интерфазы перед клеточным делением. Материнская молекула ДНК (количество цепей ДНК в клетке равно 2n) под действием ферментов раскручивается с одного конца, а затем из свободных нуклеотидов по принципу комплементарности на обеих цепях достраиваются дочерние полинуклеотидные цепи. В результате матричных реакций возникают две одинаковые по нуклеотидному составу дочерние молекулы ДНК, в которых одна из цепей старая материнская, а другая - новая, вновь синтезированная (количество ДНК в клетке становится равным 4n = 2 X 2n).

Функции ДНК.

1. Хранение наследственной информации о структуре белков или отдельных ее органоидов. Наименьшей единицей генетической информации после нуклеотида являются три последовательно расположенных нуклеотида - триплет. Последовательность триплетов в полинуклеотидной цепи определяет последовательность расположения аминокислот одной белковой молекулы (первичную структуру белка) и представляет собой ген. Вместе с белками ДНК входят в состав хроматина, вещества, из которого состоят хромосомы ядра клетки.

2. Передача наследственной информации в результате репликаций при клеточном делении от материнской клетки - дочерним.

3. Реализация наследственной информации (хранящейся в виде генов) в результате матричных реакций биосинтеза через выработку специфических для клетки и организма белков. При этом на одной из ее цепей по принципу комплементарности из нуклеотидов окружающей молекулу среды синтезируются молекулы информационной РНК.

РНК - соединение с колеблющимся (лабильным) содержанием в клетке.

Строение РНК. По своей структуре молекулы РНК менее крупные, чем молекулы ДНК с молекулярной массой от 20-30 тыс. (тРНК) до 1 млн (рРНК), РНК - одноцепочечная молекула, построенная так же, как и одна из цепей ДНК. Мономеры РНК - нуклеотиды состоят из азотистого основания, рибозы (пентозы) и фосфатной группы. РНК содержит 4 азотистых основания:

 пуриновые - аденин (А);

 пиримидиновые - гуанин (Г), цитозин (Ц), урацил (У).

В РНК тимин заменен на близкий к нему по строению урацил (нуклеотид - уридиловый. Нуклеотиды соединены в полинуклеотидную цепь так же, как и в ДНК, за счет остатков фосфорных кислот, расположенных между рибозами.

По месту нахождения в клетке среди РНК выделяют: ядерные, цитоплазматические, митохондриальные, пластидные.

По выполняемым функциям среди РНК выделяют: транспортные, информационные и рибосомные.

Транспортные РНК (тРНК) - одноцепочечные, но имеющие трехмерную структуру «клеверный лист», созданную внутримолекулярными водородными связями (рис. 3). Молекулы тРНК - самые короткие. Состоят из 80-100 нуклеотидов. На их долю приходится около 10% от общего содержания РНК в клетке. Они переносят активированные аминокислоты (каждая тРНК свою аминокислоту, всего известно 61 тРНК) к рибосомам при биосинтезе белка в клетке».

Информационная (матричная) РНК (иРНК, мРНК) - одноцепочечная молекула, которая образуется в результате транскрипции на молекуле ДНК (копирует гены) в ядре и несет информацию о первичной структуре одной белковой молекулы к месту синтеза белка в рибосомах. Молекула иРНК может состоять из 300-3000 нуклеотидов. На долю иРНК приходится 0,5-1% от общего содержания РНК в клетке.

Рибосомные РНК (рРНК) - самые крупные одноцепочечные молекулы, образующие вместе с белками сложные комплексы, поддерживающие структуру рибосом, на которых идет синтез белка.

На долю рРНК приходится около 90% от общего содержания РНК в клетке.

Вся генетическая информация организма (структура его белков), заключена в его ДНК, состоящей из нуклеотидов, объединенных в гены. Напомним, что ген - единица наследственной информации (участок молекулы ДНК), содержащая информацию о структуре одного белка - фермента. Гены, обусловливающие свойства организмов, называют структурными. А гены, которые регулируют проявление структурных генов, называют регуляторными. Проявление (экспрессия) гена (реализация наследственной информации) происходит следующим образом:

Для осуществления экспрессии гена существует генетический код - строго упорядоченная зависимость между основаниями нуклеотидов и аминокислотами (табл. 12).

Таблица 1. Генетический код

Основные свойства генетического кода.

Триплетность - кодирование аминокислот осуществляется тройками (триплетами) оснований нуклеотидов. Количество кодирующих триплетов равно 64 (4 вида нуклеотидов: А, Т, Ц, Г, 43 = 64).

Однозначность - каждый триплет кодирует только одну аминокислоту.

Вырожденность - число кодирующих триплетов превышает число аминокислот (64 20). Существуют аминокислоты, кодируемые более чем одним триплетом (в составе белков такие аминокислоты встречаются чаще). Есть три триплета, не кодирующие ни одну аминокислоту (УАА, УАГ, УГА). Они называются «нонсенс-кодонами» и играют роль «стоп-сигналов», означающих конец записи гена (общее количество кодирующих кодонов - 61).

Неперекрываемость (непрерывность) - считывание триплетов с ДНК при синтезе иРНК идет строго по трем последовательным нуклеотидам, без перекрывания соседних кодонов. Внутри гена нет «знаков препинания».

Универсальность - одни и те же триплеты кодируют одни и те же аминокислоты у всех организмов, живущих на Земле.

Общепринятые сокращения названий аминокислот:

ФЕН - фенилаланин; ГИС - гистидин;

ЛЕЙ - лейцин; ГЛН - глутамин;

ИЛЕ - изолейцин; ГЛУ - глутаминовая кислота;

МЕТ - метионин; ЛИЗ - лизин;

ВАЛ - валин; АСН - аспарагин;

СЕР - серии; АСП - аспарагиновая кислота;

ПРО - пролин; ЦИС - цистеин;

ТРЕ - треонин; ТРИ - триптофан;

АЛА - аланин; АРГ - аргинин;

ТИР - тирозин; ГЛИ - глицин.

Таким образом, ДНК-носитель всей генетической информации в клетке - непосредственного участия в син­тезе белка (т. е. реализации этой наследственной информации) не принимают. В клетках животных и растений Молекулы ДНК отделены ядерной мембраной от цитоплазмы, где происходит синтез белков. К рибосомам - местам сборки белков - высылается из ядра посредник, который несет скопированную информацию и способен пройти через поры ядерной мембраны. Таким посредником является информационная РНК, которая участвует в матричных реакциях.

Матричные реакции - это реакции синтеза новых соединений на основе «старых» макромолекул, выполняющих роль матрицы, т. е. формы, образца для копирования новых молекул. Матричными реакциями реализации наследственной информации, в которых принимают участие ДНК и РНК являются:

1. Репликация ДНК - удвоение молекул ДНК, благодаря которым передача генетической информации осуществляется от поколения к поколению. Матрицей является материнская ДНК, а новыми, образованными по этой матрице - дочерние, вновь синтезированные 2 молекулы ДНК (рис. 4).

2. Транскрипция (лат. transcription - переписывание) — это синтез молекул РНК по принципу комплементарности на матрице одной из цепей ДНК. Происходит в ядре под действием фермента ДНК-зависимой - РНК-полимеразы. Информационная РНК - это однонитевая молекула, и кодирование гена идет с одной нити двунитевой молекулы ДНК. Если в транскрибируемой нити ДНК стоит нуклеотид Г, то ДНК-полимераза включает Ц в состав иРНК, если стоит Т, то включает А в состав иРНК, если стоит Т, включает У (в состав РНК не входит тимин Т; рис. 5). Язык триплетов ДНК переводится на язык кодонов иРНК (триплеты в иРНК называются кодонами).

В результате транскрипции разных генов синтезируются все виды РНК. Затем иРНК, тРНК, рPHK через поры в ядерной оболочке выходят в цитоплазму клетки для выполнения своих функций.

3. Трансляция (лат. translatio - передача, перевод) - это синтез полипептидных цепей белков на матрице зрелой иРНК, осуществляемый рибосомами. В этом процессе выделяют несколько этапов:

Этап первый - инициация (начало синтеза - цепи). В цитоплазме на один из концов иРНК (именно на тот, с которого начинался синтез молекулы в ядре) вступает рибосома и начинает синтез полипептида. Молекула тРНК, транспортирующая аминокислоту метионин (тРНК мет), соединяется с рибосомой и прикрепляется к началу цепи иРНК (всегда кодом АУГ). Рядом с первой тРНК (не имеющей никакого отношения к синтезирующему белку) присоединяется вторая тРНК с аминокислотой. Если антикодон тРНК, то между аминокислотами возникает пептидная связь, которую образует определенный фермент. После этого тРНК покидает рибосому (уходит в цитоплазму за новой аминокислотой), а иРНК перемещается на один кодон.

Второй этап - элонгация (удлинения цепи). Рибосома перемещается по молекуле иРНК не плавно, а прерывисто, триплет за триплетом. Третья тРНК с аминокислотой связывается своим антикодоном с кодоном иРНК. При установлении комплементарности связи рибосома делает еще шаг на один «кодон», а специфический фермент «сшивает» пептидной связью вторую и третью аминокислоту - образуется пептидная цепь. Аминокислоты в растущей полипептидной цепи соединяются в той последовательности, в которой расположены шифрующие их кодоны иРНК (рис. 6).

Третий этап - терминация (окончание синтеза) цепи. Происходит при трансляции рибосомой одного из трех «нонсенс-кодонов» (УАА, УАГ, УГА). Рибосомы соскакивают с иРНК, синтез белка завершен.

Таким образом, зная порядок расположения аминокислот в молекуле белка, можно определить порядок нуклеотидов (триплетов) в цепи иРНК, а по ней - порядок пар нуклеотидов в участке ДНК и наоборот, учитывая принцип комплементарности нуклеотидов.

Естественно, что в процессе матричных реакций вследствие каких-либо причин (естественных или искусственных) могут происходить изменения - мутации. Это генные мутации на молекулярном уровне - результат различных повреждений в молекулах ДНК. Генные мутации, происходящие на молекулярном уровне, затрагивают, как правило, один или несколько нуклеотидов. Все формы генных мутаций можно разделить на две большие группы.

Первая группа - сдвиг рамки считывания - представляет собой вставки или выпадения одной или нескольких пар нуклеотидов. В зависимости от места нарушения изменяется то или иное количество кодонов. Это наиболее тяжелые повреждения генов, так как в белок будут включены совершенно другие аминокислоты.

На такие делеции и вставки приходится 80% всех спонтанных генных мутаций.

Наиболее повреждающим действием обладают так называемые нонсенс-мутации, которые связаны с появлением кодонов-терминаторов, вызывающих остановку синтеза белка. Это может привести к преждевременному окончанию синтеза белка, который быстро деградирует. Результат - гибель клетки или изменение характера индивидуального развития.

Мутации, связанные с заменой, выпадением или вставкой в кодирующей части гена фенотипически проявляются в виде замены аминокислот в белке. В зависимости от природы аминокислот и функциональной значимости нарушенного участка, наблюдается полная или частичная потеря функциональной активности белка. Как правило, это выражается в снижении жизнеспособности, изменении признаков организмов и т. д.

Вторая группа - это генные мутации с заменой пар оснований нуклеотидов. Существуют два типа замены оснований:

1. Транзиция - замена одного пуринового на пуриновое основание (А на Г или Г на А) или одного пиримидинового на пиримидиновое (Ц на Т или Т на, Ц).

2. Трансверсия - замена одного пуринового основания на пиримидиновое или наоборот (А на Ц, или Г на Т, или А на У).

Ярким примером трансверсии является серповидно-клеточная анемия, возникающая из-за наследственного нарушения структуры гемоглобина. У мутантного гена, кодирующего одну из цепей гемоглобина, нарушен всего один нуклеотид, и в иРНК происходит замена аденина на урацил (ГАА на ГУА).

В результате происходит изменение биохимического фенотипа, в цепи гемоглобина глутаминовая кислота заменена на валин. Эта замена изменяет поверхность гемоглобиновой молекулы: вместо двояковогнутого диска клетки эритроцитов становятся похожи на серпы и либо закупоривают мелкие сосуды, либо быстро удаляются из кровообращения, что быстро приводит к анемии.

Таким образом, значимость генных мутаций для жизнедеятельности организма неодинакова:

 некоторые «молчащие мутации» не оказывают влияния на структуру и функцию белка (например, замена нуклеотида, не приводящая к замене аминокислот);

 некоторые мутации ведут к полной потере функции белка и гибели клеток (например, нонсенс-мутации);

 другие мутации - при качественном изменении иРНК и аминокислот ведут к изменению признаков организма;

 и, наконец, некоторые мутации, изменяющие свойства белковых молекул, оказывают повреждающее действие на жизнедеятельность клеток - такие мутаций обусловливают тяжелое течение болезней (например, трансверсии).

Раздел 2. Решение и оформление задач по молекулярной биологии.

Глава 1.Типы задач по молекулярной биологии.

Задачи по молекулярной биологии, которые встречаются в ЕГЭ, можно разбить на семь основных типов. Первый тип связан с определением процентного содержания нуклеотидов в ДНК и чаще всего встречается в части 1 экзамена. Ко второму относятся расчетные задачи, посвященные определению количества аминокислот в белке, а также количеству нуклеотидов и триплетов в ДНК или РНК. Этот тип задач может встретиться как в части 1, так в части 2.

Задачи по молекулярной биологии типов 3, 4 и 5 посвящены работе с таблицей генетического кода, а также требуют от абитуриента знаний по процессам транскрипции и трансляции. Такие задачи составляют большинство вопросов части 2, задания 27 в ЕГЭ.

Задачи типов 6 и 7 появились в ЕГЭ относительно недавно, и они также могут встретиться абитуриенту в части 2, задания 27 . Шестой тип основан на знаниях об изменениях генетического набора клетки во время митоза и мейоза, а седьмой тип проверяет у учащегося усвоения материала по диссимиляции в клетке эукариот.

Ниже предложены решения задач всех типов и приведены примеры для самостоятельной работы. В приложении дана таблица генетического кода, используемая при решении.


1.1.1.Решение задач первого типа. Определение процентного содержания нуклеотидов в ДНК.

Справочная информация:


  • В ДНК существует 4 разновидности нуклеотидов: А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин).

  • В 1953 г Дж.Уотсон и Ф.Крик открыли, что молекула ДНК представляет собой двойную спираль.

  • Цепи комплементарны друг другу: напротив аденина в одной цепи всегда находится тимин в другой и наоборот (А-Т и Т-А); напротив цитозина — гуанин (Ц-Г и Г-Ц).

  • В ДНК количество аденина и гуанина равно числу цитозина и тимина, а также А=Т и Ц=Г (правило Чаргаффа).

Пример 1.По­яс­не­ние.


По­яс­не­ние.

В одной мо­ле­ку­ле ДНК нук­лео­ти­ды с ти­ми­ном (Т) со­став­ля­ют 24% от об­ще­го числа нук­лео­ти­дов. Опре­де­ли­те ко­ли­че­ство (в %) нук­лео­ти­дов с гу­а­ни­ном (Г), аде­ни­ном (А), ци­то­зи­ном (Ц) в мо­ле­ку­ле ДНК и объ­яс­ни­те по­лу­чен­ные ре­зуль­та­ты.

Элементы ответа:

1) Аде­нин (А) ком­пле­мен­та­рен ти­ми­ну (Т), а гу­а­нин (Г) — ци­то­зи­ну (Ц), по­это­му ко­ли­че­ство ком­пле­мен­тар­ных нук­лео­ти­дов оди­на­ко­во;

2) ко­ли­че­ство нук­лео­ти­дов с аде­ни­ном со­став­ля­ет 24%;

3) ко­ли­че­ство гу­а­ни­на (Г) и ци­то­зи­на (Ц) вме­сте со­став­ля­ют 52%, а каж­до­го из них — 26%.

Пример 2. В молекуле ДНК содержится 17%  аденина. Определите, сколько (в% ) в этой молекуле содержится других нуклеотидов.

Элементы ответа:

  1. количество аденина равно количеству тимина, следовательно, тимина в этой молекуле содержится 17% .

  2. на гуанин и цитозин приходится 100% - 17% - 17% = 66%. Т.к. их количества равны, то Ц=Г=33%.

Пример 3. Сколько процентов А,Т,Г содержится в молекуле ДНК , если известно, что Ц содержится 25%?

Элементы ответа:

1) количество комплементарных азотистых оснований равное А=Т, Г=Ц, а сумма всех оснований составляет А+Т+Г+Ц=100%;

2) следовательно: Г=Ц=25%, Г+Ц=50%,

3) А=Т= 100%-(Г+Ц) = 25%

2

1.1.2.Решение задач второго типа. Определение количества аминокислот в белке, нуклеотидов и триплетов в ДНК и РНК.

Справочная информация:

  • Аминокислоты, необходимые для синтеза белка, доставляются в рибосомы с помощью т-РНК. Каждая молекула т-РНК переносит только одну аминокислоту.

  • Информация о первичной структуре молекулы белка зашифрована в молекуле ДНК.

  • Каждая аминокислота зашифрована последовательностью из трех нуклеотидов. Эта последовательность называется триплетом или кодоном.

Пример 1. В про­цес­се транс­ля­ции участ­во­ва­ло 30 мо­ле­кул т-РНК. Опре­де­ли­те число ами­но­кис­лот, вхо­дя­щих в со­став син­те­зи­ру­е­мо­го белка, а также число три­пле­тов и нук­лео­ти­дов в гене, ко­то­рый ко­ди­ру­ет этот белок.

Элементы ответа:

1) Одна т-РНК транс­пор­ти­ру­ет одну ами­но­кис­ло­ту. Так как в син­те­зе белка участ­во­ва­ло 30 т-РНК, белок со­сто­ит из 30 ами­но­кис­лот.

2) Одну ами­но­кис­ло­ту ко­ди­ру­ет три­плет нук­лео­ти­дов, зна­чит, 30 ами­но­кис­лот ко­ди­ру­ет 30 три­пле­тов.

3) Три­плет со­сто­ит из 3 нук­лео­ти­дов, зна­чит ко­ли­че­ство нук­лео­ти­дов в гене, ко­ди­ру­ю­щем белок из 30 ами­но­кис­лот, равно 30х3=90.


Пример 2. В био­син­те­зе по­ли­пеп­ти­да участ­ву­ют мо­ле­ку­лы т-РНК с ан­ти­ко­до­на­ми УГА, АУГ, АГУ, ГГЦ, ААУ. Опре­де­ли­те нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка каж­дой цепи мо­ле­ку­лы ДНК, ко­то­рый несет ин­фор­ма­цию о син­те­зи­ру­е­мом по­ли­пеп­ти­де, и число нук­лео­ти­дов, со­дер­жа­щих аде­нин (А), гу­а­нин (Г), тимин (Т), ци­то­зин (Ц) в двух­це­по­чеч­ной мо­ле­ку­ле ДНК. Ответ по­яс­ни­те.


Элементы ответа:

1) и-РНК: АЦУ – УАЦ – УЦА – ЦЦГ – УУА (по прин­ци­пу ком­пле­мен­тар­но­сти).

2) ДНК: 1-ая цепь: ТГА – АТГ – АГТ – ГГЦ – ААТ

2-ая цепь: АЦТ – ТАЦ –ТЦА –ЦЦГ — ТТА

3) ко­ли­че­ство нук­лео­ти­дов: А — 9 (30%), Т — 9 (30%),

так как А=Т; Г — 6 (20%), Ц — 6 (20%), так как Г=Ц.


Пример 3. и-РНК со­сто­ит из 156 нук­лео­ти­дов. Опре­де­ли­те число ами­но­кис­лот, вхо­дя­щих в ко­ди­ру­е­мый ею белок, число мо­ле­кул т-РНК, участ­ву­ю­щих в про­цес­се био­син­те­за этого белка, и ко­ли­че­ство три­пле­тов в гене, ко­ди­ру­ю­щем пер­вич­ную струк­ту­ру белка. Объ­яс­ни­те по­лу­чен­ные ре­зуль­та­ты.


Элементы ответа:

1. Белок со­дер­жит 52 ами­но­кис­ло­ты, т. к. одну ами­но­кис­ло­ту ко­ди­ру­ет один три­плет (156:3).

2. т-РНК транс­пор­ти­ру­ет к месту син­те­за белка одну ами­но­кис­ло­ту, сле­до­ва­тель­но, всего в син­те­зе участ­ву­ют 52 т-РНК.

3. В гене пер­вич­ную струк­ту­ру белка ко­ди­ру­ют 52 три­пле­та, так как каж­дая ами­но­кис­ло­та ко­ди­ру­ет­ся одним три­пле­том.

Пример 4. Ген со­дер­жит 1500 нук­лео­ти­дов. В одной из цепей со­дер­жит­ся 150 нук­лео­ти­дов А, 200 нук­лео­ти­дов Т, 250 нук­лео­ти­дов Г и 150 нук­лео­ти­дов Ц. Сколь­ко нук­лео­ти­дов каж­до­го вида будет в цепи ДНК, ко­ди­ру­ю­щей белок? Сколь­ко ами­но­кис­лот будет за­ко­ди­ро­ва­но дан­ным фраг­мен­том ДНК?


Элементы ответа:

1) В ко­ди­ру­ю­щей цепи ДНК в со­от­вет­ствии с пра­ви­лом ком­пле­мен­тар­но­сти нук­лео­ти­дов будет со­дер­жать­ся: нук­лео­ти­да Т — 150, нук­лео­ти­да А — 200, нук­лео­ти­да Ц — 250, нук­лео­ти­да Г — 150. Таким об­ра­зом, всего А и Т по 350 нук­лео­ти­дов, Г и Ц по 400 нук­лео­ти­дов.  

2) Белок ко­ди­ру­ет­ся одной из цепей ДНК.

3) По­сколь­ку в каж­дой из цепей 1500/2=750 нук­лео­ти­дов, в ней 750/3=250 три­пле­тов. Сле­до­ва­тель­но, этот уча­сток ДНК ко­ди­ру­ет 250 ами­но­кис­лот.

Пример 5. Фрагмент молекулы и-РНК состоит из 87 нуклеотидов. Определите число нуклеотидов двойной цепи ДНК, число триплетов матричной цепи ДНК и число нуклеотидов в антикодонах всех т-РНК, которые участвуют в синтезе белка. Ответ поясните.

Элементы ответа:

1) двойная цепь ДНК содержит 87 х 2 = 174 нуклеотида, так как молекула ДНК состоит из двух цепей;

2) матричная цепь ДНК содержит 87: 3 = 29 триплетов, так как триплет содержит три нуклеотида;

3) в антикодонах всех т-РНК содержится 87 нуклеотидов.

Пример 6. Сколько нуклеотидов содержит ген (обе цепи ДНК), в котором запрограммирован белок из 520 аминокислот? Какую он имеет длину (расстояние между нуклеотидами в ДНК составляет 0,34 нм)? Какое время понадобиться для синтеза этого белка, если скорость передвижения рибосомы по и-РНК составляет 6 триплетов в секунду?

Элементы ответа:

1) одну аминокислоту кодирует тройка нуклеотидов — число нуклеотидов в двух цепях: 520 х 3 х 2 = 3120;

2) длина гена: 1560 х 0,34 = 530,4 нм (определяется по одной цепи, так как цепи располагаются параллельно);

3) время синтеза: 1560 : 6 = 260 с (4,3 мин.).

1.1.3.Решение задач третьего типа. Определение последовательности аминокислотного состава белка с использованием генетического года.

Справочная информация:

  • Транскрипция — это процесс синтеза и-РНК по матрице ДНК.

  • Транскрипция осуществляется по правилу комплементарности.

  • В состав РНК вместо тимина входит урацил.

Пример1. Фрагмент одной из цепей ДНК имеет следующее строение: ААГГЦТАЦГТТГ. Постройте на ней и-РНК и определите последовательность аминокислот во фрагменте молекулы белка.


Элементы ответа:

1)по правилу комплементарности определяем фрагмент и-РНК и разбиваем его на триплеты: УУЦ-ЦГА-УГЦ-ААУ.

2)по таблице генетического кода определяем последовательность аминокислот: фен-арг-цис-асн.

Пример 2. Дан фраг­мент двух­це­по­чеч­ной мо­ле­ку­лы ДНК. Вос­поль­зо­вав­шись таб­ли­цей ге­не­ти­че­ско­го кода, опре­де­ли­те, какие фраг­мен­ты бел­ко­вых мо­ле­кул могут ко­ди­ро­вать­ся ко­ди­ру­е­мой этим участ­ком ДНК. Ука­жи­те не менее трёх эта­пов дан­но­го про­цес­са. Ответ до­ка­жи­те.

 ДНК

 

ААА – ТТТ – ГГГ – ЦЦЦ

ТТТ – ААА – ЦЦЦ – ГГГ

 

 

Ге­не­ти­че­ский код (иРНК)

 

Пер­вое

ос­но­ва­ние

Вто­рое ос­но­ва­ние

Тре­тье

ос­но­ва­ние


У

Ц

А

Г


У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

Цис

Цис

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

 

Пра­ви­ла поль­зо­ва­ния таб­ли­цей

 

Пер­вый нук­лео­тид в три­пле­те берётся из ле­во­го вер­ти­каль­но­го ряда, вто¬рой — из верх­не­го го­ри­зон­таль­но­го ряда и тре­тий — из пра­во­го вер­ти­каль­но­го. Там, где пе­ре­се­кут­ся линии, иду­щие от всех трёх нук­лео­ти­дов, и на­хо­дит­ся ис­ко­мая ами­но­кис­ло­та.


Элементы ответа:

1) Если и-РНК син­те­зи­ру­ет­ся на верх­ней цепи ДНК, то её фраг­мент будет УУ­УАА­АЦЦЦГГГ.

2) Фраг­мент белка: фен–лиз–про–гли.

3) Если белок ко­ди­ру­ет­ся ниж­ней цепью, то иРНК — АА­А­У­У­УГГ­ГЦЦЦ.

4) Фраг­мент белка: лиз–фен–гли−про.

Пример3. По­сле­до­ва­тель­ность ами­но­кис­лот во фраг­мен­те мо­ле­ку­лы белка сле­ду­ю­щая: ФЕН-ГЛУ-МЕТ. Опре­де­ли­те, поль­зу­ясь таб­ли­цей ге­не­ти­че­ско­го кода, воз­мож­ные три­пле­ты ДНК, ко­то­рые ко­ди­ру­ют этот фраг­мент белка.

 

Элементы ответа:

1) Ами­но­кис­ло­та ФЕН ко­ди­ру­ет­ся сле­ду­ю­щи­ми три­пле­та­ми иРНК: УУУ или УУЦ, сле­до­ва­тель­но, на ДНК ее ко­ди­ру­ют три­пле­ты ААА или ААГ.

2) Ами­но­кис­ло­та ГЛУ ко­ди­ру­ет­ся сле­ду­ю­щи­ми три­пле­та­ми иРНК: ГАА или­ГАГ. Сле­до­ва­тель­но, на ДНК ее ко­ди­ру­ют три­пле­ты ЦТТ или ЦТЦ.

3) Ами­но­кис­ло­та МЕТ ко­ди­ру­ет­ся три­пле­том иРНК АУГ. Сле­до­ва­тель­но, на ДНК ее ко­ди­ру­ет три­плет ТАЦ.

Пример 4. Одна из цепей ДНК имеет по­сле­до­ва­тель­ность нук­лео­ти­дов: ЦАТ-ГГЦ-ТГТ–ТЦЦ–ГТЦ. .. Объ­яс­ни­те, как из­ме­нит­ся струк­ту­ра мо­ле­ку­лы белка, если про­изой­дет удво­е­ние чет­вер­то­го три­пле­та нук­лео­ти­дов в цепи ДНК?



Элементы ответа:

1) Про­изо­шла ду­пли­ка­ция. Новая цепь ДНК будет: ЦАТ — ГГЦ — ТГТ – ТЦЦ — ТЦЦ – ГТЦ.

2) Струк­ту­ра и-РНК будет: ГУА – ЦЦГ – АЦА – АГГ – АГГ – ЦАГ.

3) Про­изой­дет удли­не­ние мо­ле­ку­лы белка на одну ами­но­кис­ло­ту. Мо­ле­ку­ла белка будет со­сто­ять из ами­но­кис­лот: вал – про – тре – арг – арг – глн.

Пример 5. Ге­не­ти­че­ский ап­па­рат ви­ру­са пред­став­лен мо­ле­ку­лой РНК, фраг­мент ко­то­рой имеет сле­ду­ю­щую нук­лео­тид­ную по­сле­до­ва­тель­ность: ГУ­ГАА­А­ГАУ­ЦА­У­ГЦ­ГУГГ. Опре­де­ли­те нук­лео­тид­ную по­сле­до­ва­тель­ность дву­це­поч­ной мо­ле­ку­лы ДНК, ко­то­рая син­те­зи­ру­ет­ся в ре­зуль­та­те об­рат­ной тран­скрип­ции на РНК ви­ру­са. Уста­но­ви­те по­сле­до­ва­тель­ность нук­лео­ти­дов в иРНК и ами­но­кис­лот во фраг­мен­те белка ви­ру­са, ко­то­рая за­ко­ди­ро­ва­на в най­ден­ном фраг­мен­те мо­ле­ку­лы ДНК. Мат­ри­цей для син­те­за иРНК, на ко­то­рой идёт син­тез ви­рус­но­го белка, яв­ля­ет­ся вто­рая цепь дву­це­поч­ной ДНК. Для ре­ше­ния за­да­чи ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.


Элементы ответа:

1) РНК ви­ру­са ГУГ ААА ГАУ ЦАУ ГЦГ УГГ

ДНК 1 цепь ЦАЦ ТТТ ЦТА ГТА ЦГЦ АЦЦ

ДНК 2 цепь ГТГ ААА ГАТ ЦАТ ГЦГ ТГГ

2) иРНК ЦАЦ УУУ ЦУА ГУА ЦГЦ АЦЦ

3) белок гис – фен – лей – вал – арг – тре

1.1.4.Решение задач четвертого типа. Определение антикодона – т РНК, последовательности аминокислотного состава белка с использованием генетического года.

Справочная информация:

  • Антикодон — это последовательность из трех нуклеотидов в т-РНК, комплементарных нуклеотидам кодона и-РНК. В состав т-РНК и и-РНК входят одни те же нуклеотиды.

  • Молекула и-РНК синтезируется на ДНК по правилу комплементарности.

  • В состав ДНК вместо урацила входит тимин.

Пример 1. Фраг­мент цепи ДНК имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ТТА­ЦАГГ­ТТ­ТАТ. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на иРНК, ан­ти­ко­до­ны со­от­вет­ству­ю­щих тРНК и ами­но­кис­лот­ную по­сле­до­ва­тель­ность со­от­вет­ству­ю­ще­го фраг­мен­та мо­ле­ку­лы белка, ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода.

Элементы ответа:

1) ДНК ТТА-ЦАГ-ГТТ-ТАТ

иРНК ААУ-ГУЦ-ЦАА-АУА.

2) Ан­ти­ко­до­ны тРНК УУА, ЦАГ, ГУУ, УАУ.

3) По­сле­до­ва­тель­ность ами­но­кис­лот: асн-вал-глн-иле.

Пример 2. Фраг­мент цепи ДНК имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ТАЦЦЦТ­ЦАЦТТГ. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на иРНК, ан­ти­ко­до­ны со­от­вет­ству­ю­щих тРНК и ами­но­кис­лот­ную по­сле­до­ва­тель­ность со­от­вет­ству­ю­ще­го фраг­мен­та мо­ле­ку­лы белка, ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода.

Элементы ответа:

ДНК ТАЦ ЦЦТ ЦАЦ ТТГ

1) По прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве ДНК на­хо­дим иРНК; иРНК АУГ ГГА ГУГ ААЦ.

2) По прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве иРНК на­хо­дим тРНК; Ан­ти­ко­до­ны тРНК УАЦ, ЦЦУ, ЦАЦ, УУГ.

3) С по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода на ос­но­ве иРНК на­хо­дим по­сле­до­ва­тель­ность ами­но­кис­лот: мет-гли-вал-асн.

Пример 3. Опре­де­ли­те:по­сле­до­ва­тель­ность нук­лео­ти­дов на и-РНК, ан­ти­ко­до­ны со­от­вет­ству­ю­щих т-РНК и ами­но­кис­лот­ную по­сле­до­ва­тель­ность со­от­вет­ству­ю­ще­го фраг­мен­та мо­ле­ку­лы белка (ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода),

если фраг­мент цепи ДНК имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ГТГ­ТАТГ­ГА­АГТ.

Элементы ответа:

ГТГ-ТАТ-ГГА-АГТ — ДНК.

1) По прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве ДНК на­хо­дим иРНК: ЦАЦ-АУА-ЦЦУ-УЦА — и-РНК.

2) По прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве иРНК на­хо­дим три­пле­ты тРНК: ГУГ; УАУ; ГГА; АГУ — ан­ти­ко­до­ны т-РНК.

3) С по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода на ос­но­ве иРНК (ЦАЦ-АУА-ЦЦУ-УЦА) на­хо­дим по­сле­до­ва­тель­ность ами­но­кис­лот. Ами­но­кис­ло­ты: Гис-иле-про-сер

Пример 4. В био­син­те­зе белка участ­во­ва­ли т-РНК с ан­ти­ко­до­на­ми: УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ. Опре­де­ли­те нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка каж­дой цепи мо­ле­ку­лы ДНК, ко­то­рый несет ин­фор­ма­цию о син­те­зи­ру­е­мом по­ли­пеп­ти­де, и число нук­лео­ти­дов, со­дер­жа­щих аде­нин, гу­а­нин, тимин, ци­то­зин в двух­це­по­чеч­ной мо­ле­ку­ле ДНК.

Элементы ответа:

1) Ан­ти­ко­до­ны т-РНК ком­пле­мен­тар­ны ко­до­нам и-РНК, а по­сле­до­ва­тель­ность нук­лео­ти­дов и-РНК ком­пле­мен­тар­на одной из цепей ДНК.

2) т-РНК: УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ

и-РНК: ААУ-ЦЦГ-ГЦГ-УАА-ГЦА

1 цепь ДНК: ТТА-ГГЦ-ЦГЦ-АТТ-ЦГТ

2 цепь ДНК: ААТ-ЦЦГ-ГЦГ-ТАА-ГЦА.

3) В мо­ле­ку­ле ДНК А=Т=7, число Г=Ц=8.

Пример 5. В био­син­те­зе по­ли­пеп­ти­да участ­ву­ют мо­ле­ку­лы т-РНК с ан­ти­ко­до­на­ми УГА, АУГ, АГУ, ГГЦ, ААУ. Опре­де­ли­те нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка каж­дой цепи мо­ле­ку­лы ДНК, ко­то­рый несет ин­фор­ма­цию о син­те­зи­ру­е­мом по­ли­пеп­ти­де, и число нук­лео­ти­дов, со­дер­жа­щих аде­нин (А), гу­а­нин (Г), тимин (Т), ци­то­зин (Ц) в двух­це­по­чеч­ной мо­ле­ку­ле ДНК. Ответ по­яс­ни­те.
Элементы ответа:

1) и-РНК: АЦУ – УАЦ – УЦА – ЦЦГ – УУА (по прин­ци­пу ком­пле­мен­тар­но­сти).

2) ДНК: 1-ая цепь: ТГА – АТГ – АГТ – ГГЦ – ААТ

2-ая цепь: АЦТ – ТАЦ –ТЦА –ЦЦГ — ТТА

3) ко­ли­че­ство нук­лео­ти­дов: А — 9 (30%), Т — 9 (30%),

так как А=Т; Г — 6 (20%), Ц — 6 (20%), так как Г=Ц.

Пример 6. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на и-РНК, ан­ти­ко­до­ны т-РНК и ами­но­кис­лот­ную по­сле­до­ва­тель­ность со­от­вет­ству­ю­ще­го фраг­мен­та мо­ле­ку­лы белка (ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода), если фраг­мент цепи ДНК имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ГТ­ГЦЦГТ­ЦАААА.


Элементы ответа:

По прин­ци­пу ком­пле­мен­тар­но­сти опре­де­ля­ем по­сле­до­ва­тель­ность иРНК (с ДНК) и тРНК (с иРНК)

1) По­сле­до­ва­тель­ность на и-РНК: ЦАЦГ­Г­ЦА­ГУ­У­УУ;

2) ан­ти­ко­до­ны на т-РНК: ГУГ,ЦЦГ,УЦА,ААА;

3) ами­но­кис­лот­ная по­сле­до­ва­тель­ность: Гис-гли-сер-фен.

1.1.5.Решение задач пятого типа. Определение нуклеотидной последовательности – т РНК, аминокислоты переносимой т-РНК с использованием генетического года.

Справочная информация:

  • Молекула т-РНК синтезируется на ДНК по правилу комплементарности.

  • Не забудьте, что в состав РНК вместо тимина входит урацил.

  • Антикодон — это последовательность из трех нуклеотидов, комплементарных нуклеотидам кодона в и-РНК. В состав т-РНК и и-РНК входят одни те же нуклеотиды.


Пример 1. Из­вест­но, что все виды РНК син­те­зи­ру­ют­ся на ДНК-мат­ри­це. Фраг­мент мо­ле­ку­лы ДНК, на ко­то­ром син­те­зи­ру­ет­ся уча­сток тРНК, имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов ТТГ-ГАА-ААА-ЦГГ-АЦТ. Уста­но­ви­те нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка тРНК ко­то­рый син­те­зи­ру­ет­ся на дан­ном фраг­мен­те. Какой кодон иРНК будет со­от­вет­ство­вать цен­траль­но­му ан­ти­ко­до­ну этой тРНК? Какая ами­но­кис­ло­та будет транс­пор­ти­ро­вать­ся этой тРНК? Ответ по­яс­ни­те. Для ре­ше­ния за­да­ния ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.

Элементы ответа:

1) Нук­лео­тид­ная по­сле­до­ва­тель­ность участ­ка тРНК ААЦ-ЦУУ-УУУ-ГЦЦ-УГА;

2) нук­лео­тид­ная по­сле­до­ва­тель­ность ан­ти­ко­до­на тРНК — УУУ;

3) нук­лео­тид­ная по­сле­до­ва­тель­ность ко­до­на иРНК — ААА;

4) транс­пор­ти­ру­е­мая ами­но­кис­ло­та — лизин.

Пример 2. Ан­ти­ко­до­ны тРНК по­сту­па­ют к ри­бо­со­мам в сле­ду­ю­щей по­сле­до­ва­тель­но­сти нук­лео­ти­дов УЦГ, ЦГА, ААУ, ЦЦЦ. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на иРНК, по­сле­до­ва­тель­ность нук­лео­ти­дов на ДНК, ко­ди­ру­ю­щих опре­де­лен­ный белок и по­сле­до­ва­тель­ность ами­но­кис­лот во фраг­мен­те мо­ле­ку­лы син­те­зи­ру­е­мо­го белка, ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода:

Элементы ответа:

1) По прин­ци­пу ком­пле­мен­тар­но­сти по­сле­до­ва­тель­ность нук­лео­ти­дов на и-РНК: иРНК АГЦ-ГЦУ-УУА-ГГГ;

2) тогда по прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве иРНК на­хо­дим ДНК: ТЦГ-ЦГА-ААТ-ЦЦЦ,

3) С по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода на ос­но­ве иРНК опре­де­ля­ем по­сле­до­ва­тель­ность ами­но­кис­лот: СЕР-АЛА-ЛЕЙ-ГЛИ.

Пример 3. Из­вест­но, что все виды РНК син­те­зи­ру­ют­ся на ДНК-мат­ри­це. Фраг­мент мо­ле­ку­лы ДНК, на ко­то­рой син­те­зи­ру­ет­ся уча­сток цен­траль­ной петли тРНК, имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ЦГТ-ГГГ-ГЦТ-АГГ- ЦТГ. Какую ами­но­кис­ло­ту будет пе­ре­но­сить тРНК, син­те­зи­ру­е­мая на этом фраг­мен­те ДНК, если её тре­тий три­плет со­от­вет­ству­ет ан­ти­ко­до­ну? Ответ по­яс­ни­те. Для ре­ше­ния ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.

Элементы ответа:

Схема ре­ше­ния за­да­чи вклю­ча­ет:

1) Нук­лео­тид­ная по­сле­до­ва­тель­ность тРНК ГЦА-ЦЦЦ-ЦГА-УЦЦ-ГАЦ.

2) Нук­лео­тид­ная по­сле­до­ва­тель­ность ан­ти­ко­до­на ЦГА (тре­тий три­плет) со­от­вет­ству­ет ко­до­ну на иРНК - ГЦУ.

3) По таб­ли­це ге­не­ти­че­ско­го кода этому ко­до­ну со­от­вет­ству­ет ами­но­кис­ло­та АЛА, ко­то­рую будет пе­ре­но­сить дан­ная тРНК.

Пример 4. В био­син­те­зе фраг­мен­та мо­ле­ку­лы белка участ­во­ва­ли по­сле­до­ва­тель­но мо­ле­ку­лы тРНК с ан­ти­ко­до­на­ми АГЦ, АЦЦ, ГУА, ЦУА, ЦГА. Опре­де­ли­те ами­но­кис­лот­ную по­сле­до­ва­тель­ность син­те­зи­ру­е­мо­го фраг­мен­та мо­ле­ку­лы белка и нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка двух­це­по­чеч­ной мо­ле­ку­лы ДНК, в ко­то­рой за­ко­ди­ро­ва­на ин­фор­ма­ция о пер­вич­ной струк­ту­ре фраг­мен­та белка. Объ­яс­ни­те по­сле­до­ва­тель­ность ваших дей­ствий. Для ре­ше­ния за­да­чи ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.
Элементы ответа:

1) Так как тРНК по прин­ци­пу ком­пле­мен­тар­но­сти при­со­еди­ня­ют­ся к иРНК, то на ос­но­ве тРНК опре­де­ля­ем по­сле­до­ва­тель­ность иРНК, затем по таб­ли­це ге­не­ти­че­ско­го кода опре­де­ля­ем по­сле­до­ва­тель­ность ами­но­кис­лот в белке.

Ко­до­ны и-РНК: УЦГ-УГГ-ЦАУ-ГАУ-ГЦУ (опре­де­ля­ем по прин­ци­пу ком­пле­мен­тар­но­сти).

2) Ами­но­кис­ло­ты: сер-три-гис-асп-ала (опре­де­ля­ем с по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода).

3) Фраг­мент дву­це­по­чеч­ной ДНК. Первую цепь опре­де­ля­ем по прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве иРНК, вто­рую це­поч­ку по прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве пер­вой ДНК.

I ДНК: АГЦ-АЦЦ-ГТА-ЦТА-ЦГА

II ДНК: ТЦГ-ТГГ-ЦАТ-ГАТ-ГЦТ

Раздел 3. Задачи для самостоятельного решения.

1.Фрагмент молекулы и-РНК состоит из 87 нуклеотидов. Определите число нуклеотидов двойной цепи ДНК, число триплетов матричной цепи ДНК и число нуклеотидов в антикодонах всех т-РНК, которые участвуют в синтезе белка. Ответ поясните.

2.Сколько нуклеотидов содержит ген (обе цепи ДНК), в котором запрограммирован белок из 520 аминокислот? Какую он имеет длину (расстояние между нуклеотидами в ДНК составляет 0,34 нм)? Какое время понадобиться для синтеза этого белка, если скорость передвижения рибосомы по и-РНК составляет 6 триплетов в секунду?

3. В результате мутации во фрагменте молекулы белка аминокислота треонин (тре) заменилась на глутамин (глн). Определите аминокислотный состав фрагмента молекулы нормального и мутированного белка и фрагмент мутированной иРНК, если в норме иРНК имеет последовательность: ГУЦАЦАГЦГАУЦААУ. Ответ поясните. Для решения задания используйте таблицу генетического кода.

4.Участок одной из двух цепей молекулы ДНК содержит 300 нуклеотидов с аденином (А), 100 нуклеотидов с тимином (Т), 150 нуклеотидов с гуанином (Г) и 200 нуклеотидов с цитозином (Ц). Какое число нуклеотидов с А, Т, Г и Ц содержится в двухцепочечной молекуле ДНК? Сколько аминокислот должен содержать белок, кодируемый этим участком молекулы ДНК? Ответ поясните.

5.Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ЦГТТГГГЦТАГГЦТТ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

6.Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ЦТТАЦГГГЦАТГГЦТ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

7.В результате мутации в фрагменте молекулы белка человека произошла замена аминокислоты глицина (Гли) на аспарагиновую кислоту (Асп). Определите аминокислотный состав фрагментов молекулы белка больного человека и здорового человека, возможные фрагменты иРНК больного человека, если в норме этому фрагменту белка соответствует следующий фрагмент иРНК: УУУУЦУУУАЦААГГУЦАУАЦУ. Ответ поясните.

8.Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ТГЦЦЦАТТЦГТТАЦГ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

9.В результате мутации во фрагменте молекулы белка аминокислота треонин (тре) заменилась на глутамин (глн). Определите аминокислотный состав фрагмента молекулы нормального и мутированного белка и фрагмент мутированной иРНК, если в норме иРНК имеет последовательность: ГУЦАЦАГЦГАУЦААУ. Ответ поясните. Для решения задания используйте таблицу генетического кода.

10.В биосинтезе фрагмента молекулы белка участвовали последовательно молекулы тРНК с антикодонами ААГ, ААУ, ГГА, УАА, ЦАА. Определите аминокислотную последовательность синтезируемого фрагмента молекулы белка и нуклеотидную последовательность участка двухцепочечной молекулы ДНК, в которой закодирована информация о первичной структуре фрагмента белка. Объясните последовательность ваших действий. Для решения задачи используйте таблицу генетического кода.

11.Фраг­мент цепи иРНК имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ЦУ­А­ЦА­АГ­Г­ЦУ­АУ. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на ДНК, ан­ти­ко­до­ны со­от­вет­ству­ю­щих тРНК и ами­но­кис­лот­ную по­сле­до­ва­тель­ность со­от­вет­ству­ю­ще­го фраг­мен­та мо­ле­ку­лы белка, ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода.

12.Ан­ти­ко­до­ны по­сту­па­ют к ри­бо­со­мам в сле­ду­ю­щей по­сле­до­ва­тель­но­сти нук­лео­ти­дов УЦГ, ЦГА, ААУ, ЦЦЦ. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на иРНК, по­сле­до­ва­тель­ность нук­лео­ти­дов на ДНК, ко­ди­ру­ю­щих опре­де­лен­ный белок и по­сле­до­ва­тель­ность ами­но­кис­лот во фраг­мен­те мо­ле­ку­лы син­те­зи­ру­е­мо­го белка, ис­поль­зуя таб­ли­уг е­не­ти­че­ско­го кода:

13.По­сле­до­ва­тель­ность ами­но­кис­лот во фраг­мен­те мо­ле­ку­лы белка сле­ду­ю­щая: ФЕН-ГЛУ-МЕТ. Опре­де­ли­те, поль­зу­ясь таб­ли­цей ге­не­ти­че­ско­го кода, воз­мож­ные три­пле­ты ДНК, ко­то­рые ко­ди­ру­ют этот фраг­мент белка.

14.Раздел: Общая биология. МетаболизмИз­вест­но, что все виды РНК син­те­зи­ру­ют­ся на ДНК-мат­ри­це. Фраг­мент мо­ле­ку­лы ДНК, на ко­то­ром син­те­зи­ру­ет­ся уча­сток тРНК, имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов ТТГ-ГАА-ААА-ЦГГ-АЦТ. Уста­но­ви­те нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка тРНК ко­то­рый син­те­зи­ру­ет­ся на дан­ном фраг­мен­те. Какой кодон иРНК будет со­от­вет­ство­вать цен­траль­но­му ан­ти­ко­до­ну этой тРНК? Какая ами­но­кис­ло­та будет транс­пор­ти­ро­вать­ся этой тРНК? Ответ по­яс­ни­те. Для ре­ше­ния за­да­ния ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.

15.Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на и-РНК, ан­ти­ко­до­ны т-РНК и ами­но­кис­лот­ную по­сле­до­ва­тель­ность со­от­вет­ству­ю­ще­го фраг­мен­та мо­ле­ку­лы белка (ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода), если фраг­мент цепи ДНК имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ГТ­ГЦЦГТ­ЦАААА.

16.Одна из цепей ДНК имеет по­сле­до­ва­тель­ность нук­лео­ти­дов: ЦАТ-ГГЦ-ТГТ–ТЦЦ–ГТЦ. Объ­яс­ни­те, как из­ме­нит­ся струк­ту­ра мо­ле­ку­лы белка, если про­изой­дет удво­е­ние чет­вер­то­го три­пле­та нук­лео­ти­дов в цепи ДНК?

17.В био­син­те­зе белка участ­во­ва­ли т-РНК с ан­ти­ко­до­на­ми: УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ. Опре­де­ли­те нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка каж­дой цепи мо­ле­ку­лы ДНК, ко­то­рый несет ин­фор­ма­цию о син­те­зи­ру­е­мом по­ли­пеп­ти­де, и число нук­лео­ти­дов, со­дер­жа­щих аде­нин, гу­а­нин, тимин, ци­то­зин в двух­це­по­чеч­ной мо­ле­ку­ле ДНК. По­яс­не­ние.Раздел: Общая биология. Метаболизм

18.В про­бир­ку по­ме­сти­ли ри­бо­со­мы из раз­ных кле­ток, весь набор ами­но­кис­лот и оди­на­ко­вые мо­ле­ку­лы и-РНК и т-РНК, со­зда­ли все усло­вия для син­те­за белка. По­че­му в про­бир­ке будет син­те­зи­ро­вать­ся один вид белка на раз­ных ри­бо­со­мах?

19.Опре­де­ли­те:по­сле­до­ва­тель­ность нук­лео­ти­дов на и-РНК, ан­ти­ко­до­ны со­от­вет­ству­ю­щих т-РНК и ами­но­кис­лот­ную по­сле­до­ва­тель­ность со­от­вет­ству­ю­ще­го фраг­мен­та мо­ле­ку­лы белка (ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода),

если фраг­мент цепи ДНК имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ГТГ­ТАТГ­ГА­АГТ.

20.Фраг­мент цепи ДНК имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ТАЦЦЦТ­ЦАЦТТГ. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на иРНК, ан­ти­ко­до­ны со­от­вет­ству­ю­щих тРНК и ами­но­кис­лот­ную по­сле­до­ва­тель­ность со­от­вет­ству­ю­ще­го фраг­мен­та мо­ле­ку­лы белка, ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода.

21.Фраг­мент цепи ДНК имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ТТА­ЦАГГ­ТТ­ТАТ. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на иРНК, ан­ти­ко­до­ны со­от­вет­ству­ю­щих тРНК и ами­но­кис­лот­ную по­сле­до­ва­тель­ность со­от­вет­ству­ю­ще­го фраг­мен­та мо­ле­ку­лы белка, ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода.

22.Белок со­сто­ит из 100 ами­но­кис­лот. Уста­но­ви­те, во сколь­ко раз мо­ле­ку­ляр­ная масса участ­ка гена, ко­ди­ру­ю­ще­го дан­ный белок, пре­вы­ша­ет мо­ле­ку­ляр­ную массу белка, если сред­няя мо­ле­ку­ляр­ная масса ами­но­кис­ло­ты – 110, а нук­лео­ти­да — 300. Ответ по­яс­ни­те.

23.Из­вест­но, что все виды РНК син­те­зи­ру­ют­ся на ДНК-мат­ри­це. Фраг­мент мо­ле­ку­лы ДНК, на ко­то­ром син­те­зи­ру­ет­ся уча­сток цен­траль­ной петли тРНК, имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов АТА­ГЦТ­ГА­АЦГ­ГАЦТ. Уста­но­ви­те нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка тРНК, ко­то­рый син­те­зи­ру­ет­ся на дан­ном фраг­мен­те, и ами­но­кис­ло­ту, ко­то­рую будет пе­ре­но­сить эта тРНК в про­цес­се био­син­те­за белка, если тре­тий три­плет со­от­вет­ству­ет ан­ти­ко­до­ну тРНК. Ответ по­яс­ни­те. Для ре­ше­ния за­да­чи ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.

24.Уча­сток мо­ле­ку­лы ДНК имеет сле­ду­ю­щий со­став: — Г-А-Т-Г-А-А-Т-А-Г-Т-Г-Ц-Т-Т-Ц. Пе­ре­чис­ли­те не менее 3 по­след­ствий, к ко­то­рым может при­ве­сти слу­чай­ная за­ме­на седь­мо­го нук­лео­ти­да ти­ми­на на ци­то­зин (Ц).

25.Фраг­мент цепи ДНК имеет по­сле­до­ва­тель­ность нук­лео­ти­дов ГТГ­ТАТГ­ГА­АГТ. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на иРНК, ан­ти­ко­до­ны со­от­вет­ству­ю­щих тРНК и по­сле­до­ва­тель­ность ами­но­кис­лот во фраг­мен­те мо­ле­ку­лы белка, ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода.

26.Фраг­мент ри­бо­сом­но­го гена имеет по­сле­до­ва­тель­ность АТТ­ГЦЦ­ГАТ­ТАЦ­ЦАА­АГ­ТАЦ­ЦА­АТ. Ка­ко­ва будет по­сле­до­ва­тель­ность РНК, ко­ди­ру­е­мая этим участ­ком? К ка­ко­му клас­су РНК она будет от­но­сить­ся? Ка­ко­ва будет её функ­ция?

27.Фраг­мент ри­бо­сом­но­го гена имеет по­сле­до­ва­тель­ность ЦЦЦ­ТАТГ­ТАТ­ТАЦГ­ГА­А­ГАГ­Г­ЦАТТ. Ка­ко­ва будет по­сле­до­ва­тель­ность РНК, ко­ди­ру­е­мая этим участ­ком? К ка­ко­му клас­су РНК она будет от­но­сить­ся? Ка­ко­ва будет её функ­ция?

28.Уча­сток мо­ле­ку­лы ДНК имеет сле­ду­ю­щий со­став: Г-А-Т-Г-А-А-Т-А-Г-Т-Г-Ц-Т-Т-Ц. Пе­ре­чис­ли­те не менее 3-х по­след­ствий, к ко­то­рым может при­ве­сти слу­чай­ная за­ме­на седь­мо­го нук­лео­ти­да ти­ми­на на ци­то­зин (Ц).

29.Даны ан­ти­ко­до­ны т-РНК. Ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода, опре­де­ли­те по­сле­до­ва­тель­ность ами­но­кис­лот во фраг­мен­те мо­ле­ку­лы белка, ко­до­ны и-РНК и три­пле­ты во фраг­мен­те гена, ко­ди­ру­ю­ще­го этот белок. Ан­ти­ко­до­ны т-РНК: ГАА, ГЦА, ААА, АЦЦ.

30.Из­вест­но, что все виды РНК син­те­зи­ру­ют­ся на ДНК-мат­ри­це. Фраг­мент цепи ДНК, на ко­то­рой син­те­зи­ру­ет­ся уча­сток цен­траль­ной петли тРНК, имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ТЦЦ­Г­ЦА­ТАЦ­ГА­ТАГГ. Уста­но­ви­те нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка тРНК, ко­то­рый син­те­зи­ру­ет­ся на дан­ном фраг­мен­те, и ами­но­кис­ло­ту, ко­то­рую будет пе­ре­но­сить эта тРНК в про­цес­се био­син­те­за белка, если тре­тий три­плет яв­ля­ет­ся ан­ти­ко­до­ном тРНК. Ответ по­яс­ни­те. Для ре­ше­ния за­да­ния ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.

31.В ре­зуль­та­те му­та­ции во фраг­мен­те мо­ле­ку­лы белка ами­но­кис­ло­та трео­нин (тре) за­ме­ни­лась на глу­та­мин (глн). Опре­де­ли­те ами­но­кис­лот­ный со­став фраг­мен­та мо­ле­ку­лы нор­маль­но­го и му­ти­ро­ван­но­го белка и фраг­мент му­ти­ро­ван­ной иРНК, если в норме иРНК имеет по­сле­до­ва­тель­ность: ГУ­ЦА­ЦА­ГЦ­ГАУ­ЦА­АУ. Ответ по­яс­ни­те. Для ре­ше­ния за­да­ния ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.

32.Из­вест­но, что все виды РНК син­те­зи­ру­ют­ся на ДНК-мат­ри­це. Фраг­мент цепи ДНК, на ко­то­рой син­те­зи­ру­ет­ся уча­сток цен­траль­ной петли тРНК, имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: АЦГГ­ТА­АТТ­ГЦ­ТАТЦ. Уста­но­ви­те нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка тРНК, ко­то­рый син­те­зи­ру­ет­ся на дан­ном фраг­мен­те, и ами­но­кис­ло­ту, ко­то­рую будет пе­ре­но­сить эта тРНК в про­цес­се био­син­те­за белка, если тре­тий три­плет со­от­вет­ству­ет ан­ти­ко­до­ну тРНК. Ответ по­яс­ни­те. Для ре­ше­ния за­да­ния ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.

33.В ре­зуль­та­те му­та­ции во фраг­мен­те мо­ле­ку­лы белка ами­но­кис­ло­та фе­нил­ала­нин (фен) за­ме­ни­лась на лизин (лиз). Опре­де­ли­те ами­но­кис­лот­ный со­став фраг­мен­та мо­ле­ку­лы нор­маль­но­го и му­ти­ро­ван­но­го белка и фраг­мент му­ти­ро­ван­ной иРНК, если в норме иРНК имеет по­сле­до­ва­тель­ность: ЦУЦ­Г­ЦА­АЦ­ГУ­У­ЦА­АУ. Ответ по­яс­ни­те. Для ре­ше­ния за­да­ния ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.

34.В био­син­те­зе по­ли­пеп­ти­да участ­ву­ют мо­ле­ку­лы тРНК с ан­ти­ко­до­на­ми УАЦ, УУУ, ГЦЦ, ЦАА в дан­ной по­сле­до­ва­тель­но­сти. Опре­де­ли­те со­от­вет­ству­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов на иРНК, ДНК и по­сле­до­ва­тель­ность ами­но­кис­лот во фраг­мен­те мо­ле­ку­лы белка, ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода.

35.В био­син­те­зе фраг­мен­та мо­ле­ку­лы белка участ­во­ва­ли по­сле­до­ва­тель­но мо­ле­ку­лы тРНК с ан­ти­ко­до­на­ми АЦЦ, ГУЦ, УГА, ЦЦА, ААА. Опре­де­ли­те ами­но­кис­лот­ную по­сле­до­ва­тель­ность син­те­зи­ру­е­мо­го фраг­мен­та мо­ле­ку­лы белка и нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка двух­це­по­чеч­ной мо­ле­ку­лы ДНК, в ко­то­рой за­ко­ди­ро­ва­на ин­фор­ма­ция о пер­вич­ной струк­ту­ре фраг­мен­та белка. Объ­яс­ни­те по­сле­до­ва­тель­ность Ваших дей­ствий. Для ре­ше­ния за­да­чи ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.

36.В био­син­те­зе фраг­мен­та мо­ле­ку­лы белка участ­во­ва­ли по­сле­до­ва­тель­но мо­ле­ку­лы тРНК с ан­ти­ко­до­на­ми ААГ, ААУ, ГГА, УАА, ЦАА. Опре­де­ли­те ами­но­кис­лот­ную по­сле­до­ва­тель­ность син­те­зи­ру­е­мо­го фраг­мен­та мо­ле­ку­лы белка и нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка двух­це­по­чеч­ной мо­ле­ку­лы ДНК, в ко­то­рой за­ко­ди­ро­ва­на ин­фор­ма­ция о пер­вич­ной струк­ту­ре фраг­мен­та белка. Объ­яс­ни­те по­сле­до­ва­тель­ность ваших дей­ствий. Для ре­ше­ния за­да­чи ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.

37.Из­вест­но, что все виды РНК син­те­зи­ру­ют­ся на ДНК-мат­ри­це. Фраг­мент цепи ДНК, на ко­то­рой син­те­зи­ру­ет­ся уча­сток цен­траль­ной петли тРНК, имеет сле­ду­ю­щую по­сле­до­ва­тель­ность нук­лео­ти­дов: ТГЦЦ­ЦАТТЦГ­Т­ТАЦГ. Уста­но­ви­те нук­лео­тид­ную по­сле­до­ва­тель­ность участ­ка тРНК, ко­то­рый син­те­зи­ру­ет­ся на дан­ном фраг­мен­те, и ами­но­кис­ло­ту, ко­то­рую будет пе­ре­но­сить эта тРНК в про­цес­се био­син­те­за белка, если тре­тий три­плет со­от­вет­ству­ет ан­ти­ко­до­ну тРНК. Ответ по­яс­ни­те. Для ре­ше­ния за­да­ния ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.

38.Фраг­мент цепи иРНК имеет по­сле­до­ва­тель­ность нук­лео­ти­дов: ЦГА­ГУ­А­У­Г­ЦУГГ. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на одной цепи мо­ле­ку­лы ДНК, ан­ти­ко­до­ны тРНК и по­сле­до­ва­тель­ность ами­но­кис­лот, ко­то­рая со­от­вет­ству­ет дан­но­му фраг­мен­ту гена, ис­поль­зуя таб­ли­цу ге­не­ти­че­ско­го кода.

39.Фраг­мент цепи ДНК имеет по­сле­до­ва­тель­ность нук­лео­ти­дов ТТ­ТА­ГЦТГТЦГ­ГА­АГ. В ре­зуль­та­те про­изо­шед­шей му­та­ции в тре­тьем три­пле­те тре­тий нук­лео­тид заменён на нук­лео­тид А. Опре­де­ли­те по­сле­до­ва­тель­ность нук­лео­ти­дов на и-РНК по ис­ход­но­му фраг­мен­ту цепи ДНК и изменённому. Объ­яс­ни­те, что про­изойдёт с фраг­мен­том мо­ле­ку­лы белка и его свой­ства­ми после воз­ник­шей му­та­ции ДНК. Для ре­ше­ния ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.

40.В про­цес­се транс­ля­ции участ­во­ва­ло 30 мо­ле­кул т-РНК. Опре­де­ли­те число ами­но­кис­лот, вхо­дя­щих в со­став син­те­зи­ру­е­мо­го белка, а также число три­пле­тов и нук­лео­ти­дов в гене, ко­то­рый ко­ди­ру­ет этот белок.
41.В про­бир­ку по­ме­сти­ли ри­бо­со­мы из раз­ных кле­ток, весь набор ами­но­кис­лот и оди­на­ко­вые мо­ле­ку­лы и-РНК и т-РНК, со­зда­ли все усло­вия для син­те­за белка. По­че­му в про­бир­ке будет син­те­зи­ро­вать­ся один вид белка на раз­ных ри­бо­со­мах?

42.Белок со­сто­ит из 100 ами­но­кис­лот. Уста­но­ви­те, во сколь­ко раз мо­ле­ку­ляр­ная масса участ­ка гена, ко­ди­ру­ю­ще­го дан­ный белок, пре­вы­ша­ет мо­ле­ку­ляр­ную массу белка, если сред­няя мо­ле­ку­ляр­ная масса ами­но­кис­ло­ты – 110, а нук­лео­ти­да — 300. Ответ по­яс­ни­те.

43.Ге­не­ти­че­ский ап­па­рат ви­ру­са пред­став­лен мо­ле­ку­лой РНК, фраг­мент ко­то­рой имеет сле­ду­ю­щую нук­лео­тид­ную по­сле­до­ва­тель­ность: ГУ­ГАА­А­ГАУ­ЦА­У­ГЦ­ГУГГ. Опре­де­ли­те нук­лео­тид­ную по­сле­до­ва­тель­ность дву­це­поч­ной мо­ле­ку­лы ДНК, ко­то­рая син­те­зи­ру­ет­ся в ре­зуль­та­те об­рат­ной тран­скрип­ции на РНК ви­ру­са. Уста­но­ви­те по­сле­до­ва­тель­ность нук­лео­ти­дов в иРНК и ами­но­кис­лот во фраг­мен­те белка ви­ру­са, ко­то­рая за­ко­ди­ро­ва­на в най­ден­ном фраг­мен­те мо­ле­ку­лы ДНК. Мат­ри­цей для син­те­за иРНК, на ко­то­рой идёт син­тез ви­рус­но­го белка, яв­ля­ет­ся вто­рая цепь дву­це­поч­ной ДНК. Для ре­ше­ния за­да­чи ис­поль­зуй­те таб­ли­цу ге­не­ти­че­ско­го кода.

Раздел 4. Критерии проверки и оценки выполнения заданий .

Задание 1.

Элемент ответа

1) двойная цепь ДНК содержит 87 х 2 = 174 нуклеотида, так как молекула ДНК состоит из двух цепей;

2) матричная цепь ДНК содержит 87: 3 = 29 триплетов, так как триплет содержит три нуклеотида;

3) в антикодонах всех т-РНК содержится 87 нуклеотидов.

Задание 2.

Элемент ответа

1) одну аминокислоту кодирует тройка нуклеотидов — число нуклеотидов в двух цепях: 520 х 3 х 2 = 3120;

2) длина гена: 1560 х 0,34 = 530,4 нм (определяется по одной цепи, так как цепи располагаются параллельно);

3) время синтеза: 1560 : 6 = 260 с (4,3 мин.).

Задание 3.

Элемент ответа

иРНК ГУЦАЦАГЦГАУЦААУ

Нормальный белок вал тре ала иле асн

После мутации фрагмент молекулы белка будет иметь состав вал-глн-ала-иле-асн. Глутамин кодируется кодонами ЦАА и ЦАГ, следовательно, мутированная иРНК будет ГУЦЦААГЦГАУЦААУ или ГУЦЦАГГЦГАУЦААУ.

Задание 4.

Элемент ответа

Если в одной цепи ДНК 300 нуклеотидов с аденином, 100 нуклеотидов с тимином, 150 нуклеотидов с гуанином и 200 нуклеотидов с цитозином, то в комплементарной ей цепи, соответственно, 300 нуклеотидов с тимином, 100 нуклеотидов с аденином, 150 нуклеотидов с цитозином и 200 нуклеотидов с гуанином. Следовательно, в двуцепочечной ДНК 400 нуклеотидов с аденином, 400 нуклеотидов с тимином, 350 нуклеотидов с гуанином и 350 нуклеотидов с цитозином.

Если в одной цепи ДНК 300 + 100 +150 + 200 = 750 нуклеотидов, значит, там 750 / 3 = 250 триплетов. Следовательно, этот участок ДНК кодирует 250 аминокислот.

Задание 5.

Элемент ответа

ДНК: ЦГТ ТГГ ГЦТ АГГ ЦТТ

тРНК: ГЦА АЦЦ ЦГА УЦЦ ГАА

Триплет: ГЦУ

Аминокислота: ала

Задание 6.

Элемент ответа

ДНК: ЦТТ АЦГ ГГЦ АТГ ГЦТ

иРНК: ГАА УГЦ ЦЦГ УАЦ ЦГА

тРНК: ЦУУ АЦГ ГГЦ АУГ ГЦУ

Аминокислота: гли

Задание 7.

Элемент ответа

иРНК здорового человека: УУУ УЦУ УУА ЦАА ГГУ ЦАУ АЦУ

Аминокислоты: фен сер лей глн гли гис тре

После замены гли на асп:

Аминокислоты: фен сер лей глн асп гис тре

Так как аминокислоте асп соответствуют два кодона (ГАУ и ГАЦ), то

иРНК больного человека: УУУ УЦУ УУА ЦАА ГАУ ЦАУ АЦУ

или УУУ УЦУ УУА ЦАА ГАЦ ЦАУ АЦУ

Задание 8.

Элемент ответа

1) нуклеотидная последовательность участка тРНК - АЦГГТУААГЦААУГЦ;

2) нуклеотидная последовательность антикодона ААГ (третий триплет) соответствует кодону на иРНК УУЦ;

3) по таблице генетического кода этому кодону соответствует аминокислота Фен, которую будет переносить данная тРНК

Задание 9.

Элемент ответа

1) по кодонам иРНК находим фрагмент нормального белка: вал-тре-ала-иле-асн;

2) фрагмент мутированный белок имеет последовательность: вал-глн-ала-иле-асн;

3) по нормальной иРНК найдём фрагмент мутированной иРНК: ГУЦЦААГЦГАУЦААУ или ГУЦЦАГГЦГАУЦААУ, так как аминокислоте - Глн- соответствует два кодона

Задание 10.

Элемент ответа

1) по антикодонам тРНК найдём участок иРНК, на котором синтезируется фрагмент белка: УУЦУУАЦЦУАУУГУУ;

2) по кодонам иРНК найдём последовательность аминокислот в белке: фен-лей-про-иле-вал;

3) по фрагменту иРНК найдём участок ДНК: ААГААТГГАТААЦАА; по участку одной цепи найдём вторую цепь: ТТЦТТАЦЦТАТТГТТ

Задание 11.

Элементы ответа:

1) по­сле­до­ва­тель­ность на ДНК: ГАТГ­ТТЦЦ­ГА­ТА;

2) ан­ти­ко­до­ны четырёх мо­ле­кул тРНК: ГАУ, ГУУ, ЦЦГ, АУА;

3) ами­но­кис­лот­ная по­сле­до­ва­тель­ность: лей-глн-гли-тир.

Задание 12.

Элементы ответа:

1) По прин­ци­пу ком­пле­мен­тар­но­сти по­сле­до­ва­тель­ность нук­лео­ти­дов на и-РНК: иРНК АГЦ-ГЦУ-УУА-ГГГ;

2) тогда по прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве иРНК на­хо­дим ДНК: ТЦГ-ЦГА-ААТ-ЦЦЦ,

3) С по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода на ос­но­ве иРНК опре­де­ля­ем по­сле­до­ва­тель­ность ами­но­кис­лот: СЕР-АЛА-ЛЕЙ-ГЛИ. Раздел: Общая биология. Метаболизм

Задание 13.

Элементы ответа:

1) Ами­но­кис­ло­та ФЕН ко­ди­ру­ет­ся сле­ду­ю­щи­ми три­пле­та­ми иРНК: УУУ или УУЦ, сле­до­ва­тель­но, на ДНК ее ко­ди­ру­ют три­пле­ты ААА или ААГ.

2) Ами­но­кис­ло­та ГЛУ ко­ди­ру­ет­ся сле­ду­ю­щи­ми три­пле­та­ми иРНК: ГАА или­ГАГ. Сле­до­ва­тель­но, на ДНК ее ко­ди­ру­ют три­пле­ты ЦТТ или ЦТЦ.

3) Ами­но­кис­ло­та МЕТ ко­ди­ру­ет­ся три­пле­том иРНК АУГ. Сле­до­ва­тель­но, на ДНК ее ко­ди­ру­ет три­плет ТАЦ.

Задание 14.По­яс­не­ние.

Элементы ответа:

1) Нук­лео­тид­ная по­сле­до­ва­тель­ность участ­ка тРНК ААЦ-ЦУУ-УУУ-ГЦЦ-УГА;

2) нук­лео­тид­ная по­сле­до­ва­тель­ность ан­ти­ко­до­на тРНК — УУУ;

3) нук­лео­тид­ная по­сле­до­ва­тель­ность ко­до­на иРНК — ААА;

4) транс­пор­ти­ру­е­мая ами­но­кис­ло­та — лизин.

Задание 15.

Элементы ответа:

По прин­ци­пу ком­пле­мен­тар­но­сти опре­де­ля­ем по­сле­до­ва­тель­ность иРНК (с ДНК) и тРНК (с иРНК)

1) По­сле­до­ва­тель­ность на и-РНК: ЦАЦГ­Г­ЦА­ГУ­У­УУ;

2) ан­ти­ко­до­ны на т-РНК: ГУГ,ЦЦГ,УЦА,ААА;

3) ами­но­кис­лот­ная по­сле­до­ва­тель­ность: Гис-гли-сер-фен.Раздел: Общая биология. Метаболизм

Задание 16.Раздел: Общая биология. Метаболизм

Элементы ответа:

1) Про­изо­шла ду­пли­ка­ция. Новая цепь ДНК будет: ЦАТ — ГГЦ — ТГТ – ТЦЦ — ТЦЦ – ГТЦ.

2) Струк­ту­ра и-РНК будет: ГУА – ЦЦГ – АЦА – АГГ – АГГ – ЦАГ.

3) Про­изой­дет удли­не­ние мо­ле­ку­лы белка на одну ами­но­кис­ло­ту. Мо­ле­ку­ла белка будет со­сто­ять из ами­но­кис­лот: вал – про – тре – арг – арг – глн.

Задание 17.

Элементы ответа:

1) Ан­ти­ко­до­ны т-РНК ком­пле­мен­тар­ны ко­до­нам и-РНК, а по­сле­до­ва­тель­ность нук­лео­ти­дов и-РНК ком­пле­мен­тар­на одной из цепей ДНК.

2) т-РНК: УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ

и-РНК: ААУ-ЦЦГ-ГЦГ-УАА-ГЦА

1 цепь ДНК: ТТА-ГГЦ-ЦГЦ-АТТ-ЦГТ

2 цепь ДНК: ААТ-ЦЦГ-ГЦГ-ТАА-ГЦА.

3) В мо­ле­ку­ле ДНК А=Т=7, число Г=Ц=8.

Задание 18.По­яс­не­ние.

Элементы ответа:

1) Пер­вич­ная струк­ту­ра белка опре­де­ля­ет­ся по­сле­до­ва­тель­но­стью ами­но­кис­лот, за­шиф­ро­ван­ных на участ­ке мо­ле­ку­лы ДНК. ДНК яв­ля­ет­ся мат­ри­цей для мо­ле­ку­лы и-РНК.

2) Мат­ри­цей для син­те­за белка яв­ля­ет­ся мо­ле­ку­ла и-РНК, а они в про­бир­ке оди­на­ко­вые.

3) К месту син­те­за белка т-РНК транс­пор­ти­ру­ют ами­но­кис­ло­ты в со­от­вет­ствии с ко­до­на­ми и-РНКПо­яс­не­ние.Раздел: Общая биология. Метаболизм

Задание 19.

Элементы ответа:

ГТГ-ТАТ-ГГА-АГТ — ДНК.

1) По прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве ДНК на­хо­дим иРНК: ЦАЦ-АУА-ЦЦУ-УЦА — и-РНК.

2) По прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве иРНК на­хо­дим три­пле­ты тРНК: ГУГ; УАУ; ГГА; АГУ — ан­ти­ко­до­ны т-РНК.

3) С по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода на ос­но­ве иРНК (ЦАЦ-АУА-ЦЦУ-УЦА) на­хо­дим по­сле­до­ва­тель­ность ами­но­кис­лот. Ами­но­кис­ло­ты: Гис-иле-про-серПо­яс­не­ние.

Задание 20.

Элементы ответа:

ДНК ТАЦ ЦЦТ ЦАЦ ТТГ

1) По прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве ДНК на­хо­дим иРНК; иРНК АУГ ГГА ГУГ ААЦ.

2) По прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве иРНК на­хо­дим тРНК; Ан­ти­ко­до­ны тРНК УАЦ, ЦЦУ, ЦАЦ, УУГ.

3) С по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода на ос­но­ве иРНК на­хо­дим по­сле­до­ва­тель­ность ами­но­кис­лот: мет-гли-вал-асн.По­яс­не­ние.Раздел: Общая биология. Метаболизм

Задание 21.

Элементы ответа:

1) ДНК ТТА-ЦАГ-ГТТ-ТАТ

иРНК ААУ-ГУЦ-ЦАА-АУА.

2) Ан­ти­ко­до­ны тРНК УУА, ЦАГ, ГУУ, УАУ.

3) По­сле­до­ва­тель­ность ами­но­кис­лот: асн-вал-глн-иле.По­яс­не­ние.Раздел: Общая биология. Метаболизм

Задание 22.

Эле­мен­ты от­ве­та:

1) ге­не­ти­че­ский код три­пле­тен, сле­до­ва­тель­но, белок, со­сто­я­щий из 100 ами­но­кис­лот, ко­ди­ру­ют 300 нук­лео­ти­дов;

2) мо­ле­ку­ляр­ная масса белка 100 х 110 = 11000; мо­ле­ку­ляр­ная масса гена 300 х 300 = 90000;

3) уча­сток ДНК тя­же­лее, чем ко­ди­ру­е­мый им белок, в 8 раз (90 000/11 000).

Задание 23.

Элементы ответа:

1) нук­лео­тид­ная по­сле­до­ва­тель­ность участ­ка тРНК УА­УЦ­ГА­ЦУ­У­ГЦ­ЦУ­ГА;

2) нук­лео­тид­ная по­сле­до­ва­тель­ность ан­ти­ко­до­на ЦУУ (тре­тий три­плет) со­от­вет­ству­ет ко­до­ну на иРНК ГАА;

3) по таб­ли­це ге­не­ти­че­ско­го кода этому ко­до­ну со­от­вет­ству­ет ами­но­кис­ло­та ГЛУ, ко­то­рую будет пе­ре­но­сить дан­ная тРНК.

Задание 24.

Элементы ответа:

1) про­изой­дет ген­ная му­та­ция — из­ме­нит­ся кодон тре­тьей ами­но­кис­ло­ты;

2) в белке может про­изой­ти за­ме­на одной ами­но­кис­ло­ты на дру­гую, в ре­зуль­та­те из­ме­нит­ся пер­вич­ная струк­ту­ра белка;

3) могут из­ме­нить­ся все осталь­ные струк­ту­ры белка, что по­вле­чет за собой по­яв­ле­ние у ор­га­низ­ма но­во­го при­зна­ка.

Задание 25.

Элементы ответа:

1) по­сле­до­ва­тель­ность нук­лео­ти­дов на иРНК: ЦА­ЦА­У­АЦ­ЦУ­У­ЦА;

2) ан­ти­ко­до­ны мо­ле­кул тРНК: ГУГ, УАУ, ГГА, АГУ;

3) по­сле­до­ва­тель­ность ами­но­кис­лот в мо­ле­ку­ле белка: гис-иле-про-сер.

Задание 26

Элементы ответа:

1. По­сле­до­ва­тель­ность РНК — УА­АЦГ­Г­ЦУА­А­УГ­ГУ­У­У­ЦА­УГ­ГУ­УА.

2. В ри­бо­со­ме на­хо­дит­ся рРНК, об­ра­зу­ю­ща­я­ся в про­цес­се тран­скрип­ции с дан­но­го участ­ка ДНК.

3. Она участ­ву­ет в син­те­зе белка, свя­зы­ва­ет иРНК с ри­бо­со­мой.

Задание 27

Элементы ответа:

1. По­сле­до­ва­тель­ность РНК — ГГ­ГАУ­А­ЦА­УА­А­У­ГЦ­ЦУ­У­ЦУЦЦ­ГУАА.  

2. В ри­бо­со­ме на­хо­дит­ся рРНК, об­ра­зу­ю­ща­я­ся в про­цес­се тран­скрип­ции с дан­но­го участ­ка ДНК.

3. Она участ­ву­ет в син­те­зе белка, свя­зы­ва­ет иРНК с ри­бо­со­мой.

Задание 28

Элементы ответа:

1) про­изой­дет ген­ная му­та­ция — из­ме­нит­ся кодон тре­тьей ами­но­кис­ло­ты;

2) в белке может про­изой­ти за­ме­на одной ами­но­кис­ло­ты на дру­гую, в ре­зуль­та­те из­ме­нит­ся пер­вич­ная струк­ту­ра белка;

3) могут из­ме­нить­ся все осталь­ные струк­ту­ры белка, что по­вле­чет за собой по­яв­ле­ние у ор­га­низ­ма но­во­го при­зна­ка.

Задание 29.

Элементы ответа:

1) Ко­до­ны и-РНК: ЦУУ-ЦГУ-УУУ-УГГ (опре­де­ля­ем по прин­ци­пу ком­пле­мен­тар­но­сти).

2) Ами­но­кис­ло­ты: лей-арг-фен-три (опре­де­ля­ем с по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода).

3) Фраг­мент гена: ГАА-ГЦА-ААА-АЦЦ (опре­де­ля­ем по прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве иРНК).

Задание 30

Элементы ответа:

1) Син­те­зи­ру­е­мая тРНК — АГ­ГЦ­ГУ­А­У­Г­ЦУ­А­УЦЦ (по прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве ука­зан­ной цепи ДНК)

2) Так как ан­ти­ко­дон тРНК — тре­тий три­плет — АУГ по усло­вию, то кодон на иРНК — УАЦ

3) Поль­зу­ясь таб­ли­цей ге­не­ти­че­ско­го кода опре­де­ля­ем, что кодон на иРНК — УАЦ — ко­ди­ру­ет ами­но­кис­ло­ту ТИР

Задание 31

Элементы ответа:

1) иРНК ГУЦ−АЦА-ГЦГ — АУЦ — ААУ

нор­маль­ный белок вал тре ала иле асн

Опре­де­ля­ем по­сле­до­ва­тель­ность ами­но­кис­лот с по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода.

2) После му­та­ции фраг­мент мо­ле­ку­лы белка будет иметь со­став вал-глн-ала-иле-асн.

3) Глу­та­мин ко­ди­ру­ет­ся двумя ко­до­на­ми ЦАА и ЦАГ,

сле­до­ва­тель­но, му­ти­ро­ван­ная иРНК будет ГУЦ−ЦАА−ГЦГ−АУЦ−ААУ или ГУЦ−ЦАГ−ГЦГ−АУЦ−ААУ.

Задание 32

Элементы ответа:

1) Син­те­зи­ру­е­мая тРНК — УГЦ-ЦАУ-УАА-ЦГА-УАГ (по прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве ука­зан­ной цепи ДНК)

2) Так как ан­ти­ко­дон тРНК — тре­тий три­плет — УАА по усло­вию, то кодон на иРНК по прин­ци­пу ком­пле­мен­тар­но­сти — АУУ 

3) Поль­зу­ясь таб­ли­цей ге­не­ти­че­ско­го кода опре­де­ля­ем, что кодон на иРНК — АУУ — ко­ди­ру­ет ами­но­кис­ло­ту иле

Задание 33

Элементы ответа:

1) иРНК ЦУЦ-ГЦА-АЦГ-УУЦ-ААУ

нор­маль­ный белок лей — ала — тре — фен — асн

Опре­де­ля­ем по­сле­до­ва­тель­ность ами­но­кис­лот с по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода.

2) После му­та­ции фраг­мент мо­ле­ку­лы белка будет иметь со­став лей — ала — тре — лиз — асн

3) Лизин ко­ди­ру­ет­ся двумя ко­до­на­ми ААА и ААГ,

сле­до­ва­тель­но, му­ти­ро­ван­ная иРНК будет ЦУЦ-ГЦА-АЦГ-ААА-ААУ или ЦУЦ-ГЦА-АЦГ-ААГ-ААУ

Задание 34.

 Элементы ответа:

1) Ко­до­ны и-РНК: АУГ-ААА-ЦГГ-ГУУ (опре­де­ля­ем по прин­ци­пу ком­пле­мен­тар­но­сти).

2) Ами­но­кис­ло­ты: мет-лиз-арг-вал (опре­де­ля­ем с по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода).

3) Фраг­мент гена: ТАЦ-ТТТ-ГЦЦ-ЦАА (опре­де­ля­ем по прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве иРНК).

Задание 35

Элементы ответа:

1) Ко­до­ны и-РНК: УГГ-ЦАГ-АЦУ-ГГУ-УУУ (опре­де­ля­ем по прин­ци­пу ком­пле­мен­тар­но­сти).

2)Ами­но­кис­ло­ты: три — глн — тре-гли — фен (опре­де­ля­ем с по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода).

3) Фраг­мент дву­це­по­чеч­ной ДНК. Первую цепь опре­де­ля­ем по прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве иРНК, вто­рую це­поч­ку по прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве пер­вой ДНК.

I ДНК: АЦЦ-ГТЦ-ТГА-ЦЦА-ААА

II ДНК: ТГГ — ЦАГ-АЦТ-ГГТ-ТТТ

Задание 36.

Элементы ответа:

1) Ко­до­ны и-РНК: УУЦ-УУА-ЦЦУ-АУУ-ГУУ (опре­де­ля­ем по прин­ци­пу ком­пле­мен­тар­но­сти).

2) Ами­но­кис­ло­ты: фен — лей-про — иле — вал (опре­де­ля­ем с по­мо­щью таб­ли­цы ге­не­ти­че­ско­го кода).  

3) Фраг­мент дву­це­по­чеч­ной ДНК. Первую цепь опре­де­ля­ем по прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве иРНК, вто­рую це­поч­ку по прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве пер­вой ДНК.

I ДНК: ААГ-ААТ-ГГА-ТАА-ЦАА

II ДНК: ТТЦ-ТТА-ЦЦТ-АТТ-ГТТ

Задание 37

Элементы ответа:

1) Син­те­зи­ру­е­мая тРНК – АЦГГ­ГУА­А­Г­ЦА­А­У­ГЦ (по прин­ци­пу ком­пле­мен­тар­но­сти на ос­но­ве ука­зан-ной цепи ДНК)

2) Так как ан­ти­ко­дон тРНК — тре­тий три­плет — ААГ по усло­вию, то кодон на иРНК — УУЦ

3) Поль­зу­ясь таб­ли­цей ге­не­ти­че­ско­го кода опре­де­ля­ем, что кодон на иРНК — УУЦ — ко­ди­ру­ет ами­но­кис­ло­ту ФЕН

Задание 38

Элементы ответа:

1) по­сле­до­ва­тель­ность на ДНК: ГЦТ­ЦА­ТАЦ­ГАЦЦ;

2) ан­ти­ко­до­ны мо­ле­кул тРНК: ГЦУ, ЦАУ, АЦГ, АЦЦ;

3) по­сле­до­ва­тель­ность ами­но­кис­лот: арг-вал-цис-три.

Задание 39

Элементы ответа:

Схема ре­ше­ния за­да­чи вклю­ча­ет:

1) По­сле­до­ва­тель­ность на и-РНК по ис­ход­но­му фраг­мен­ту цепи ДНК: АА­А­УЦ­ГА­ЦА­ГЦ­ЦУ­УЦ;

2) По­сле­до­ва­тель­ность на и-РНК по изменённому фраг­мен­ту цепи ДНК: АА­А­УЦ­ГА­ЦУ­ГЦ­ЦУ­УЦ;

3) Фраг­мент мо­ле­ку­лы белка и его свой­ства не из­ме­ня­ют­ся, так как три­пле­ты АЦА и АЦУ ко­ди­ру­ют одну ами­но­кис­ло­ту ТРЕ.По­яс­не­ние.

Задание 40.

Элементы ответа:

1) Одна т-РНК транс­пор­ти­ру­ет одну ами­но­кис­ло­ту. Так как в син­те­зе белка участ­во­ва­ло 30 т-РНК, белок со­сто­ит из 30 ами­но­кис­лот.

2) Одну ами­но­кис­ло­ту ко­ди­ру­ет три­плет нук­лео­ти­дов, зна­чит, 30 ами­но­кис­лот ко­ди­ру­ет 30 три­пле­тов.

3) Три­плет со­сто­ит из 3 нук­лео­ти­дов, зна­чит ко­ли­че­ство нук­лео­ти­дов в гене, ко­ди­ру­ю­щем белок из 30 ами­но­кис­лот, равно 30х3=90.

Задание 41.

Элементы ответа:

1) Пер­вич­ная струк­ту­ра белка опре­де­ля­ет­ся по­сле­до­ва­тель­но­стью ами­но­кис­лот, за­шиф­ро­ван­ных на участ­ке мо­ле­ку­лы ДНК. ДНК яв­ля­ет­ся мат­ри­цей для мо­ле­ку­лы и-РНК.

2) Мат­ри­цей для син­те­за белка яв­ля­ет­ся мо­ле­ку­ла и-РНК, а они в про­бир­ке оди­на­ко­вые.

3) К месту син­те­за белка т-РНК транс­пор­ти­ру­ют ами­но­кис­ло­ты в со­от­вет­ствии с ко­до­на­ми и-РНК.

Задание 42

Элементы ответа:

1) ге­не­ти­че­ский код три­пле­тен, сле­до­ва­тель­но, белок, со­сто­я­щий из 100 ами­но­кис­лот, ко­ди­ру­ют 300 нук­лео­ти­дов;

2) мо­ле­ку­ляр­ная масса белка 100 х 110 = 11000; мо­ле­ку­ляр­ная масса гена 300 х 300 = 90000;

3) уча­сток ДНК тя­же­лее, чем ко­ди­ру­е­мый им белок, в 8 раз (90 000/11 000).

Задание 43.

Элементы ответа:

1) РНК ви­ру­са ГУГ ААА ГАУ ЦАУ ГЦГ УГГ

ДНК 1 цепь ЦАЦ ТТТ ЦТА ГТА ЦГЦ АЦЦ

ДНК 2 цепь ГТГ ААА ГАТ ЦАТ ГЦГ ТГГ

2) иРНК ЦАЦ УУУ ЦУА ГУА ЦГЦ АЦЦ

3) белок гис – фен – лей – вал – арг – тре



























Приложение 1. Таблица.

Ге­не­ти­че­ский код (иРНК)

 

Пер­вое

ос­но­ва­ние

Вто­рое ос­но­ва­ние

Тре­тье

ос­но­ва­ние


У

Ц

А

Г


У

Фен

Фен

Лей

Лей

Сер

Сер

Сер

Сер

Тир

Тир

Цис

Цис

Три

У

Ц

А

Г

Ц

Лей

Лей

Лей

Лей

Про

Про

Про

Про

Гис

Гис

Глн

Глн

Арг

Арг

Арг

Арг

У

Ц

А

Г

А

Иле

Иле

Иле

Мет

Тре

Тре

Тре

Тре

Асн

Асн

Лиз

Лиз

Сер

Сер

Арг

Арг

У

Ц

А

Г

Г

Вал

Вал

Вал

Вал

Ала

Ала

Ала

Ала

Асп

Асп

Глу

Глу

Гли

Гли

Гли

Гли

У

Ц

А

Г

 

Пра­ви­ла поль­зо­ва­ния таб­ли­цей

 

Пер­вый нук­лео­тид в три­пле­те бе­рет­ся из ле­во­го вер­ти­каль­но­го ряда, вто­рой – из верх­не­го го­ри­зон­таль­но­го ряда и тре­тий – из пра­во­го вер­ти­каль­но­го. Там, где пе­ре­се­кут­ся линии, иду­щие от всех трёх нук­лео­ти­дов, и на­хо­дит­ся ис­ко­мая ами­но­кис­ло­та












Литература

  1. Чебышев Н.В. Биология. Москва. Новая волна, 2012.

  2. Пономарева И.Н. Биология. Профильный уровень. Москва. Вента – Граф, 2013.

  3. Сингер М., Берг П. Гены и геномы. — Москва, 1998.

  4. Стент Г., Кэлиндар Р. Молекулярная генетика. — Москва, 1981.

  5. Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. — 1989.

  6. Патрушев Л. И. Экспрессия генов. — М.: Наука, 2000. — 000

  7. Муртазин Р.М. Задачи и упражнения по общей биологии – М: Просвещение, 2009.

  8. Ярыгин В.Н., Васильева В.И., Волков И.Н., Синельникова В.В. Биология: В 2 т. – М.: Высш. шк., 2000.

  9. Билич Г.Л., Крыжановский В.А. Биология. Полный курс: В 3 т. – М.: «Оникс 21 век», 2002.

  10. Кемп Б., Армс К. Введение в биологию. – М.: Мир, 1986.

  11. Грин Н., Стаут У., ТейлорД. Биология: В 3 т. – М.: Мир, 1990. Т.1 – 3.

  12. Слюсарев А.А., Жукова С.В. Биология. – Киев: Высш. шк., 1987.

  13. Пехов А.П. Биология с основами экологии. – СПб., 2002.






Получите в подарок сайт учителя

Предмет: Биология

Категория: Прочее

Целевая аудитория: 11 класс

Автор: Майоров Иван Дмитриевич

Дата: 04.08.2017

Номер свидетельства: 424887


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства