Особенности математических представлений у детей с ТНР
Особенности математических представлений у детей с ТНР
Методика формирования элементарных математических представлений у детей дошкольного возраста прошла длительный путь своего развития. В 17 – 18 вв. вопросы содержания и методов обучения детей дошкольного возраста арифметике и формирования представлений о размерах, мерах измерения, времени и пространстве нашли отражение в передовых педагогических системах воспитания, разработанных Я. А. Коменским, И. Г. Песталоцции, К. Д. Ушинским, Л. Н. Толстым и др. Современниками методики математического развития являются такие учёные как Р. Л. Березина, З. А. Михайлова, Р. Л. Рихтерман, А. А. Столяр, А. С. Метлина и др.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Особенности математических представлений у детей с ТНР»
Формирование математических представлений дошкольников в продуктивной деятельности
Понятие «развитие математических способностей» является довольно сложным, комплексным и многоаспектным. Оно состоит из взаимосвязанных и взаимообусловленных представлений о пространстве, форме, величине, времени, количестве, их свойствах и отношениях, которые необходимы для формирования у ребенка «житейских» и «научных» понятий.
Методика формирования элементарных математических представлений у детей дошкольного возраста прошла длительный путь своего развития. В 17 – 18 вв. вопросы содержания и методов обучения детей дошкольного возраста арифметике и формирования представлений о размерах, мерах измерения, времени и пространстве нашли отражение в передовых педагогических системах воспитания, разработанных Я. А. Коменским, И. Г. Песталоцции, К. Д. Ушинским, Л. Н. Толстым и др. Современниками методики математического развития являются такие учёные как Р. Л. Березина, З. А. Михайлова, Р. Л. Рихтерман, А. А. Столяр, А. С. Метлина и др.
Дети дошкольного возраста проявляют спонтанный интерес к математическим категориям: количества, форма, время, пространство, которые помогают им лучше ориентироваться в вещах и ситуациях, упорядочивать и связывать их друг с другом, способствуют формированию понятий.
Анализ состояния обучения дошкольников в математике приводит многих специалистов (В.Н.Аванесова, О.М.Дьяченко, З.А.Михайлова, А.А.Смоленцова, А.А.Столяра и др.) к выводу о необходимости реализации в дидактических играх функции формирования новых знаний, представлений, способов познавательной деятельности. Иными словами речь идёт о необходимости использования не только обучающих, но и развивающих функций игры, обучения и развития через игру.
В обучении дошкольников необходимо использовать игровые методы. Согласно концепции обучения детей дошкольного возраста игра рассматривается как основной метод обучения. В игре наиболее ярко и интенсивно проявляется, формируется и развивается психика ребёнка.
Формированию у ребенка математических представлений способствует использование разнообразных дидактических игр. В игре ребенок приобретает новые знания, умения, навыки. Игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей направлены на умственное развитие дошкольника в целом.
В связи с проблемой формирования и развития способностей следует указать, что целый ряд исследований психологов направлен на выявление структуры способностей дошкольников к различным видам деятельности. При этом под способностями понимается комплекс индивидуально – психологических особенностей человека, отвечающих требованиям данной деятельности и являющиеся условиям успешного выполнения. Таким образом, способности – сложное, интегральное, психическое образование, своеобразный синтез свойств, или, как их называют компонентов.
Общий закон образования способностей состоит в том, что они формируются в процессе овладения и выполнения тех видов деятельности, для которых они необходимы.
Способности не есть нечто раз и навсегда предопределенное, они формируются и развиваются в процессе обучения, в процессе упражнения, овладение соответствующей деятельностью, поэтому нужно формировать, развивать, воспитывать, совершенствовать способности детей и нельзя заранее точно предвидеть как далеко может пойти это развитие.
Говоря о математических способностях как особенностях умственной деятельности, следует прежде всего указать на несколько распространенных среди педагогов заблуждений.
Во – первых, многие считают, что математические способности заключаются прежде всего в способности к быстрому и точному вычислению (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей. Во – вторых, многие думают, что способные к математике отличаются хорошей памятью на формулы, цифры, числа. Однако, как указывает академик А. Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул. Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов. Особенно быстрый темп работы сам по себе не имеет отношения к математических способностям. Ребенок может работать медленно и не торопливо, но в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики.
Крутецкий В. А. в книге «Психология математических способностей дошкольников» различает девять способностей (компонентов математических способностей):
1). Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм оперированию формальными структурами, структурами отношений и связей.
2). Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном.
3). Способность к оперированию числовой и знаковой символикой.
4). Способность к «последовательному, правильно расчлененному логическому рассуждению», связанному с потребностью в доказательствах, обосновании, выводах.
5). Способность сокращать процесс рассуждения, свернутыми структурами.
6). Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли).
7). Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов.
8). Математическая память. Можно предложить, что ее характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы.
9). Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики как геометрия.
Дети четырех лет активно осваивают счет, пользуются числами, осуществляют элементарные вычисления по наглядной основе и устно, осваивают простейшие временные и пространственные отношения, преобразуют предметы различных форм и величин. Ребенок, не осознавая того, практически включается в простую математическую деятельность, осваивая при этом свойства, отношения, связи и зависимость на предметах и числовом уровне.
Объем представлений следует рассматривать в качестве основы познавательного развития. Познавательные и речевые умения составляют как бы технологию процесса познания, минимум умений, без освоения которых дальнейшее познание мира и развитие ребенка будет затруднительно. Активность ребенка, направленное на познание, реализуется в содержательной самостоятельной игровой и практической деятельности, в организуемых воспитателем познавательных развивающих играх.
Взрослый создает условия и обстановку, благоприятные для вовлечения ребенка в деятельность сравнения, сосчитывания, воссоздания, группировки, перегруппировки и т.д. При этом инициатива в развертывании игры, действия принадлежит ребенку. Воспитатель вычленяет, анализирует ситуацию, направляет процесс ее развития, способствует получению результата.
Ребенка окружают игры, развивающие его мысль и приобщающие его к умственному труду. Например, игры из серии: «Логические кубики», «Уголки», «Составь куб» и другие;
Нельзя обойтись и без дидактических пособий. Они помогают ребенку вычленить анализируемый объект, увидеть его во всем многообразии свойств, установить связи и зависимости, определить элементарные отношения, сходства и отличия. К дидактическим пособиям, выполняющим аналогичные функции, относятся логические блоки Дьенеша, цветные счетные палочки, модели и другие.
Играя и занимаясь детьми, воспитатель способствует развитию у них умений и способностей:
- оперировать свойствами, отношениями объектов, числами, выявлять простейшие изменения и зависимости объектов по форме, величине;
- сравнивать, обобщать группы предметов, соотносить вычленять закономерности чередования и следования, оперировать в плане представлений, стремиться к творчеству;
- проявлять инициативу в деятельности, самостоятельность в уточнении или выдвижении цели, в ходе рассуждений, в выполнении и достижении результата;
- рассказывать о выполняемом или выполненном действии, разговаривать со взрослыми, сверстниками по поводу содержания игрового (практического) действия.
Основные представления, познавательные и речевые умения, которые осваиваются детьми 4-5 лет в процессе овладения математическими представлениями.
Свойства. Представления.
Размер предметов: по длине (длинный, короткий); по высоте (высокий, низкий); по ширине (широкий, узкий); по толщине (толстый, тонкий); по массе (тяжелый, легкий); по глубине (глубокий, мелкий); по объему (большой, маленький).
Геометрические фигуры и тела: круг, овал, квадрат, треугольник, прямоугольник, шар, куб, цилиндр.
Структурные элементы геометрических фигур: сторона, угол, их количество.
Форма предметов: круглый, треугольный, квадратный. Логические связи между группами величин форм: низкие, но толстые; найти общее и различное в группах фигур круглой, квадратной, треугольной форм.
Связи между изменениями (сменой) основания классификации (группировки) и количеством полученных групп, объектах в них.