kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Признаки делимости натуральных чисел

Нажмите, чтобы узнать подробности

В данной работе рассматриваются некоторые признаки делимости натуральных чисел, которые разделены на четыре группы. В первую группу вошли те числа, делимость которых определяется по последней (им) цифре (ам). Ко второй группе относятся те числа, делимость которых определяется по сумме цифр данного числа. К следующей третей группе относятся те числа, делимость которых определяется после выполнения некоторых арифметических действий над цифрами данного числа. И к четвёртой группе относятся те числа, для определения делимости которых используются уже ранее известные признаки делимости.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Признаки делимости натуральных чисел»

Районная научно-исследовательская конференция школьников Лахденпохского муниципального района

«Шаг в будущее»













Проект по математике на тему:

«Признаки делимости натуральных чисел»



Выполнила: Галкина Наталья

ученица 7 класса

МКОУ «Элисенваарской СОШ»

Руководитель: Васильева

Лариса Владимировна

учитель математики

МКОУ «Элисенваарской СОШ»







2014 г.


Оглавление:


  1. Введение 3 стр.

  2. Из истории математики 4 стр.

  3. Основные понятия 4 стр.

  4. Классификация признаков делимости: 5 стр.

    1. Делимость чисел определяется по последней(им) цифре(ам) 5 – 6 стр.

    2. Делимость чисел определяется по сумме цифр числа: 6 стр.

    3. Делимость чисел определяется после выполнения каких-то действий над цифрами числа 6 - 9 стр.

    4. Для определения делимости числа используются другие признаки 9 – 10 стр.

  5. Применение признаков делимости на практике 10 – 11 стр.

  6. Заключение 11 стр.

  7. Библиографический список 12 стр.



















  1. Введение


Актуальность исследования: Признаки делимости всегда интересовали ученых разных времен и народов. При изучении на уроках математики темы «Признаки делимости чисел на 2, 3, 5, 9, 10» у меня возник интерес к исследованию чисел на делимость. Было предположено, что если можно определить делимость чисел на эти числа, то должны быть признаки, по которым можно определить делимость натуральных чисел и на другие числа. В некоторых случаях, для того, чтобы узнать делится ли какое-либо натуральное число a на натуральное число b без остатка, не обязательно делить данные числа. Достаточно знать некоторые признаки делимости.

Гипотеза – если существуют признаки делимости натуральных чисел на 2, 3, 5, 9 и 10, то существуют и другие признаки, по которым можно определить делимость натуральных чисел.

Цель исследования – дополнить уже известные признаки делимости натуральных чисел нацело, изучаемые в школе и систематизировать эти признаки делимости.

Для достижения этой цели необходимо решить следующие задачи:

  • Самостоятельно исследовать делимость чисел.

  • Изучить дополнительную литературу с целью ознакомления с другими признаками делимости.

  • Объединить и обобщить признаки из разных источников.

  • Сделать вывод.

Объект исследования – изучение всевозможных признаков делимости.

Предмет исследования – признаки делимости.

Методы исследования – сбор материала, обработка данных, сравнение, анализ, обобщение.

Новизна: в ходе выполнения проекта я пополнила свои знания о признаках делимости натуральных чисел.









  1. Из истории математики


Блез Паскаль (родился в 1623 году) - один из самых знаменитых людей в истории человечества. Паскаль умер, когда ему было 39 лет, но, несмотря на столь короткую жизнь, вошел в историю как выдающийся математик, физик, философ и писатель. Его именем названы единица давления (паскаль) и весьма популярный сегодня язык программирования. Блез Паскаль нашёл общий алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число.

Признак Паскаля — метод, позволяющий получить признаки делимости на любое число. Своего рода «универсальный признак делимости».

Признак делимости Паскаля: Натуральное число а разделится на другое натуральное число b только в том случае, если сумма произведений цифр числа а на соответствующие остатки, получаемые при делении разрядных единиц на число b, делится на это число.

Например: число 2814 делится на 7, так как 2·6+8·2+1·3+4=35 делится на 7. (Здесь 6-остаток отделения 1000 на 7, 2- остаток от деления 100 на 7 и 3- остаток от деления 10 на 7).



  1. Основные понятия

Вспомним некоторые математические понятия, которые нам будут необходимы при изучении данной темы.

  • Признак делимости - это правило, по которому, не выполняя деления, можно установить, делится ли одно число на другое.

  • Делителем натурального числа а называют натуральное число, на которое а делится без остатка.

  • Простыми называются натуральные числа, которые не имеют других натуральных различных делителей, кроме единицы и самого себя.

  • Составными называются числа, которые имеют и другие натуральные делители кроме 1 и самого себя.





  1. Признаки делимости

Все рассмотренные мною в данной работе признаки делимости натуральных чисел можно разделить на 4 группы:


Рассмотрим более подробно каждую из этих групп.


    1. Делимость чисел определяется по последней (им) цифре (ам)


К первой группе рассмотренных мною признаков делимости натуральных чисел относятся признаки делимости на 2, 4, 5, 8, 20, 25, 50, 125 и разрядные единицы 10, 100 и т.д.

Признак делимости на 2: число делится на 2 тогда, когда последняя цифра этого числа делится на 2 (т.е. последняя цифра является чётным числом).

Например: 32217864 : 2

Признак делимости на 4: число делится на 4 тогда, когда две его последние цифры – нули, либо когда двузначное число, образованное двумя его последними цифрами, делится на 4.

Например,  35324 : 4; 6600 : 4

Признак делимости на 5: число делится на 5 тогда, когда его последняя цифра - 5 или 0.

Например: 36780 : 5 или 123265 : 5

Признак делимости на 8: число делится на 8 тогда, когда на 8 делится трехзначное число, образованное из трех последних цифр этого числа.

Например: 432240 : 8

Признак делимости на 20: число делится на 20 тогда, когда число, образованное двумя последними цифрами, делится на 20. (Другая формулировка: число делится на 20 тогда, когда последняя цифра числа — 0, а предпоследняя — чётная).

Например: 59640 : 20

Признак делимости на 25: на 25 делятся числа, две последние цифры которых нули или образуют число, которое делится на 25.

Например: 667975 : 25 или 7768900 : 25

Признак делимости на 50: число делится на 50 тогда, когда число, образованное двумя его младшими десятичными цифрами, делится на 50.

Например: 564350 : 50 или 554300 : 50

Признак делимости на 125: число делится на 125, если три его последние цифры нули или образуют число, которое делится на 125.

Например: 32157000 : 125 или 3216250 : 125

Признаки делимости на разрядную единицу 10, 100, 1000 и т.д.: на разрядную единицу делятся те натуральные числа, у которых количество нулей больше или равно количеству нулей разрядной единицы.

Например, 12 000 делится на 10, 100 и 1000.


    1. Делимость чисел определяется по сумме цифр числа

К этой группе признаков делимости натуральных чисел относятся рассмотренные мною признаки делимости на 3, 9, 11.

Признак делимости на 3: число делится на 3, если его сумма цифр делится на 3.

Например: 5421 : 3 т.к. 5+4+2+1=12, (12:3)

Признак делимости на 9: число делится на 9, если его сумма цифр делится на 9.

Например: 653022 : 9 т.к. 6+5+3+0+2+2=18, (18:9)

Признак делимости на 11: на 11 делятся те числа, у которых сумма цифр, стоящих на нечётных местах, либо равна сумме цифр, стоящих на чётных местах, либо отличается от неё на число, кратное 11.

Например: 865948732:11 т.к. 8+5+4+7+2=26 и 6+9+8+3=26 (26=26); 815248742:11 т.к. 8+5+4+7+2=26 и 1+2+8+4=15, 26-15=11, (11:11)


    1. Делимость чисел определяется после выполнения каких-то действий над цифрами этого числа

К этой группе признаков делимости натуральных чисел относятся признаки делимости на: 6, 7, 11, 13,17, 19, 23, 27, 29, 31, 33, 37, 41, 59, 79, 101

Признак делимости на 6:

Признак 1: число делится на 6 тогда, когда результат вычитания удвоенного числа сотен из числа, стоящего после сотен делится на 6.

Например, 138 : 6 т.к. 1·2=2, 38 – 2=36, (36:6); 744:6 т.к. 44 – 7·2=30, (30:6)

Признак 2: число делится на 6 тогда и только тогда, когда учетверённое число десятков, сложенное с числом единиц делится на 6.

Например, 768:6 т.к. 76·4+8=312, 31·4+2=126, 12·4+6=54 (54:6)

Признаки делимости на 7:

Признак 1: число делится на 7 тогда, когда утроенное число десятков, сложенное с числом единиц, делится на 7.

Например, число 154:7, т.к. на 7 делятся 15·3 + 4 = 49 (49:7)

Признак 2: число делится на 7 тогда, когда модуль алгебраической суммы чисел, образующих нечётные группы по три цифры (начиная с единиц), взятых со знаком «+», и чётных со знаком «-» делится на 7.

Например, 138689257:7, т.к. ǀ138-689+257ǀ=294 (294:7)

Признаки делимости на 11:

Признак 1: число делится на 11 тогда, когда модуль разности между суммой цифр, занимающих нечётные позиции, и суммой цифр, занимающих чётные места делится на 11.

Например, 9163627:11, т.к. ǀ(9+6+6+7)-(1+3+2)ǀ=22 (22:11)

Признак 2: число делится на 11 тогда, когда на 11 делится сумма чисел, образующих группы по две цифры (начиная с единиц).

Например, 103785:11, т.к. 10+37+85=132 и 01+32=33 (33:11)

Признаки делимости на 13:

Признак 1: число делится на 13 тогда, когда сумма числа десятков с учетверенным числом единиц делится на 13.

Например, 845 :13, т.к. 84+5·4=104, 10+4·4=26 (26:13)

Признак 2: число делится на 13 тогда, когда разность числа десятков с девятикратным числом единиц делится на 13.

Например, 845 :13, т.к. 84-5·9=39 (39:13)

Признак делимости на 17: число делится на 17 тогда, когда модуль разности числа десятков и пятикратного числа единиц делится на 17.

Например, 221:17, т.к. ǀ22-5·1ǀ=17

Признаки делимости на 19: число делится на 19 тогда, когда число десятков, сложенное с удвоенным числом единиц, делится на 19.

Например, 646:19, т.к. 64+6·2=76, 7+2·6=19, (19:19)

Признаки делимости на 23:

Признак 1: число делится на 23 тогда, когда число сотен, сложенное с утроенным числом, образованным двумя последними цифрами, делится на 23.

Например, 28842:23, т.к. 288+3·42=414, 4+3·14=46 (46:23)

Признак 2: число делится на 23 тогда, когда число десятков, сложенное с семикратным числом единиц, делится на 23.

Например, 391:23, т.к. 39+7·1=46  (46:23)

Признак 3: число делится на 23 тогда, когда число сотен, сложенное с семикратным числом десятков и утроенным числом единиц, делится на 23.

Например, 391:23, т.к. 3+7·9+3·1=69  (69:23)

Признак делимости на 27: число делится на 27 тогда, когда на 27 делится сумма чисел, образующих группы по три цифры (начиная с единиц).

Например, 2705427:27 т.к. 427+705+2=1134, 134+1=135, (135:27)

Признак делимости на 29: число делится на 29 тогда, когда число десятков, сложенное с утроенным числом единиц, делится на 29.

Например, 261:29, т.к. 26+3·1=29 (29:29)

Признак делимости на 31: число делится на 31 тогда, когда модуль разности числа десятков и утроенного числа единиц делится на 31.

Например, 217:31, т.к. ǀ21-3·7ǀ= 0, (0:31)

Признаки делимости на 33: если сумма, составленная при разбивании числа справа налево на группы по две цифры, делится на 33, то и число делится на 33.

Например, 396:33, т.к. 96+3=99 (99:33)

Признаки делимости на 37:

Признак 1: число делится на 37 тогда, когда при разбиении числа на группы по три цифры (начиная с единиц) сумма этих групп кратна 37.

Например, число 100048:37, т.к. 100+048=148, (148:37)

Признак 2: число делится на 37 тогда, когда на 37 делится модуль утроенного числа сотен, сложенного с учетверённым числом десятков, за вычетом числа единиц, умноженного на семь.

Например, число 481:37, так как на 37 делится ǀ3·4+4·8-7·1ǀ=37

Признаки делимости на 41:

Признак 1: число делится на 41 тогда, когда модуль разности числа десятков и четырёхкратного числа единиц делится на 41.

Например, 369:41, т.к.  ǀ36-4·9ǀ=0, (0:41)

Признак 2: чтобы проверить, делится ли число на 41, его следует справа налево разбить на группы по 5 цифр в каждой. Затем в каждой группе первую справа цифру умножить на 1, вторую цифру умножить на 10, третью — на 18, четвёртую — на 16, пятую — на 37 и все полученные произведения сложить. Если результат будет делиться на 41, тогда и само число будет делиться на 41.

Признак делимости на 59: число делится на 59 тогда, когда число десятков, сложенное с числом единиц, умноженное на 6, делится на 59.

Например, 767:59, т.к. 76+7·6=118, 11+8·6=59, (59:59)

Признак делимости на 79: число делится на 79 тогда, когда число десятков, сложенное с числом единиц, умноженное на 8, делится на 79.

Например, 711:79, т.к. 71+8·1=79, (79:79)

Признак делимости на 99: число делится на 99 тогда, когда на 99 делится сумма чисел, образующих группы по две цифры (начиная с единиц).

Например, 12573:99, т.к. 1+25+73=99, (99:99)

Признак делимости на 101: число делится на 101 тогда, когда модуль алгебраической суммы чисел, образующих нечётные группы по две цифры (начиная с единиц), взятых со знаком «+», и чётных со знаком «–» делится на 101.

Например, 590547:101, т.к. ǀ59-5+47ǀ=101, (101:101)


    1. Для определения делимости числа используются другие признаки делимости

К этой группе признаков делимости натуральных чисел относятся признаки делимости на: 6, 12, 14, 15, 27, 30, 60 и т.д. Эти все числа - составные. Признаки делимости составных чисел строятся на признаках делимости простых чисел, на которые можно разложить любое составное число.

Признак делимости на 6:

Признак 1: число делится на 6 тогда, когда оно делится и на 2, и на 3, то есть, если оно четное и сумма его цифр делится на 3.

Например, 768:6, т.к. 7+6+8=21 (21:3) и последняя цифра в числе 768 – четная.

Признак делимости на 12: число делится на 12, тогда, когда оно одновременно делится на 3 и на 4.

Например, 408:12, т.к. 4+0+8=12 (12:3) и две последние цифры делятся на 4 (08:4)

Признак делимости на 14: число делится на 14 тогда, когда оно делится на 2 и на 7.

Например, число 45612:14 т. к. оно делится и на 2 и на 7 , значит, оно делится и на 14.

Признак делимости на 15: число делится на 15 тогда, когда оно делится на 3 и на 5.

Например, 1146795:15 т.к. это число делится и на 3 и на 5.

Признаки делимости на 27: число делится на 27 тогда, когда оно делится на 3 и на 9.

Например, 511704:27 т.к. 5+1+1+7+0+4=18, (18:3 и 18:9)

Признаки делимости на 30: число делится на 30 тогда, когда оно заканчивается на 0 и сумма всех цифр делится на 3.

Например, 510:30 т.к. 5+1+0=6 (6:3) и в числе 510 (последняя цифра 0)

Признаки делимости на 60: для того, чтобы число делилось на 60, необходимо и достаточно, чтобы оно делилось на 4, на 3, на 5.

Например, 1620:60 т.к. 1+6+2+0=9 (9:3), число 1620 заканчивается 0, т.е. делится на 5 и 1620 : 4 т.к. две последние цифры 20:4


  1. Применение признаков делимости на практике

Работа имеет практическое применение. Ее могут использовать школьники и взрослые при решении реальных ситуаций; учителя, как при проведении уроков по математике, так и на факультативных курсах и дополнительных занятий на повторение.

Данное исследование будет полезным для учащихся при самостоятельной подготовке к выпускным и вступительным экзаменам. А также будет полезно и для учеников, целью которых стали высокие места на городских олимпиадах.


Задача № 1. Можно ли, используя только цифры 3 и 4, записать:

  1. число, которое делиться на 10;

  2. четное число;

  3. число, кратное 5;

  4. нечетное число


Задача № 2

Напишите какое-нибудь девятизначное число, в котором нет повторяющихся цифр (все цифры разные) и которое делится без остатка на 1.

  1. Напишите наибольшее из таких чисел.

  2. Напишите наименьшее из таких чисел.

Ответ: 987652413; 102347586

Задача № 3

Найдите наибольшее четырехзначное число, все цифры которого различны и которое делится на 2, 5, 9, 11.

Ответ: 8910

Задача № 4

Оля задумала простое трехзначное число, все цифры которого различны. На какую цифру оно может заканчиваться, если его последняя цифра равна сумме первых двух. Приведите примеры таких чисел.

Ответ: только на 7. Есть 4 числа удовлетворяющие условию задачи: 167, 257, 347, 527

Задача № 5

В двух классах вместе 70 учеников. В одном классе 7/17 учеников не явились на занятия, а в другом 2/9 получили отличные отметки по математике. Сколько учеников в каждом классе?

Решение: В первом из этих классов могло быть: 17, 34, 51… - числа, кратные 17. Во втором классе: 9, 18, 27, 36, 45, 54… - числа, кратные 9. Нам нужно выбрать 1 число из первой последовательности, а 2 число из второй так, чтобы они в сумме давали 70. Причем в этих последовательностях только небольшое число членов могут выражать возможное количество детей в классе. Это соображение существенно ограничивает перебор вариантов. Возможным единственным вариантом оказалась пара (34, 36).

Задача № 6

В 9 классе за контрольную работу 1/7 учеников получили пятёрки, 1/3 – четверки, ½ - тройки. Остальные работы оказались неудовлетворительными. Сколько было таких рабо

Решение: Решением задачи должно являться число, кратное числам: 7, 3, 2. Найдем сначала наименьшее из таких чисел. НОК (7, 3, 2) = 42. Можно составить выражение по условию задачи: 42 – (42 : 7 + 42 : 3 + 42 : 2) = 1 – 1 неуспевающий. Математические отношение отношения задачи допускают, что число учеников в классе 84, 126 и т.д. человек. Но из соображений здравого смысла следует, что наиболее приемлемым ответом является число 42.

Ответ: 1 работа.


  1. Заключение:

В результате выполнения данной работы я узнала, что кроме известных мне признаков делимости на 2, 3, 5, 9 и 10 существуют еще и другие признаки делимости натуральных чисел. Полученные знания значительно ускоряет решение многих задач. И я смогу использовать эти знания в своей учебной деятельности, как на уроках математики, так и во внеклассных занятиях. Следует так же отметить, что формулировки некоторых признаков делимости сложные. Может быть, поэтому они не изучаются в школе. Предполагаю и в дальнейшем продолжить работу по изучению признаков делимости натуральных чисел.

Библиографический список:


  1. Энциклопедический словарь юного математика. Савин А.П. Москва «Педагогика» 1989.

  2. Математика. Дополнительные материалы к уроку математики 5-11 классы. Рязановский А.Р., Зайцев Е.А. Москва «Дрофа» 2002.

  3. За страницами учебника математики. Виленкин Н.Я., Депман И.Я. М.: Просвещение, 1989.

  4. Внеклассная работа по математике в 6-8 классах. Москва. «Просвещение» 1984 г. В. А. Гусев, А. И. Орлов, А. Л. Розенталь.

  5. «1001 вопрос и ответ. Большая книга знаний» Москва. «Мир книги» 2004.

  6. Факультативный курс по математике. Никольская И.Л. – Москва. Просвещение 1991.

  7. Олимпиадные задачи по математике и методы их решения. Фарков А. В. - Москва. 2003г.

  8. Интернет ресурсы.



13



Просмотр содержимого презентации
«Признаки делимости натуральных чисел»

Районная научно-исследовательская конференция школьников  Лахденпохского муниципального района «Шаг в будущее» «Признаки делимости натуральных чисел» Выполнила: Галкина Наталья ученица 7 класса МКОУ «Элисенваарской СОШ» Руководитель: Васильева  Лариса Владимировна учитель математики МКОУ «Элисенваарской  СОШ»  2014 г.

Районная научно-исследовательская конференция школьников

Лахденпохского муниципального района «Шаг в будущее»

«Признаки делимости натуральных чисел»

Выполнила: Галкина Наталья

ученица 7 класса

МКОУ «Элисенваарской СОШ»

Руководитель: Васильева Лариса Владимировна

учитель математики МКОУ «Элисенваарской СОШ»

2014 г.

Актуальность исследования : Признаки делимости всегда интересовали ученых разных времен и народов. При изучении на уроках математики темы «Признаки делимости чисел на 2, 3, 5, 9, 10» у меня возник интерес к исследованию чисел на делимость. Было предположено, что если можно определить делимость чисел на эти числа, то должны быть признаки, по которым можно определить делимость натуральных чисел и на другие числа. В некоторых случаях, для того, чтобы узнать делится ли какое-либо натуральное число a на натуральное число b без остатка, не обязательно делить данные числа. Достаточно знать некоторые признаки делимости.  Гипотеза  – если существуют признаки делимости натуральных чисел на 2, 3, 5, 9 и 10, то существуют и другие признаки, по которым можно определить делимость натуральных чисел.  Цель исследования – дополнить уже известные признаки делимости натуральных чисел нацело, изучаемые в школе и систематизировать эти признаки делимости.  Для достижения этой цели необходимо решить следующие задачи:

Актуальность исследования : Признаки делимости всегда интересовали ученых разных времен и народов. При изучении на уроках математики темы «Признаки делимости чисел на 2, 3, 5, 9, 10» у меня возник интерес к исследованию чисел на делимость. Было предположено, что если можно определить делимость чисел на эти числа, то должны быть признаки, по которым можно определить делимость натуральных чисел и на другие числа. В некоторых случаях, для того, чтобы узнать делится ли какое-либо натуральное число a на натуральное число b без остатка, не обязательно делить данные числа. Достаточно знать некоторые признаки делимости. Гипотеза – если существуют признаки делимости натуральных чисел на 2, 3, 5, 9 и 10, то существуют и другие признаки, по которым можно определить делимость натуральных чисел. Цель исследования – дополнить уже известные признаки делимости натуральных чисел нацело, изучаемые в школе и систематизировать эти признаки делимости. Для достижения этой цели необходимо решить следующие задачи:

  • Самостоятельно исследовать делимость чисел.
  • Изучить дополнительную литературу с целью ознакомления с другими признаками делимости.
  • Объединить и обобщить признаки из разных источников.
  • Сделать вывод. Объект исследования – делимость натуральных чисел. Предмет исследования – признаки делимости. Методы исследования – сбор материала, обработка данных, сравнение, анализ, обобщение. Новизна : в ходе выполнения проекта я пополнила свои знания о признаках делимости натуральных чисел.
Из истории математики  Блез Паскаль (родился в 1623 году) - один из самых знаменитых людей в истории человечества. Паскаль умер, когда ему было 39 лет, но, несмотря на столь короткую жизнь, вошел в историю как выдающийся математик, физик, философ и писатель. Его именем названы единица давления (паскаль) и весьма популярный сегодня язык программирования. Блез Паскаль нашёл общий алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число.  Признак Паскаля — метод, позволяющий получить признаки делимости на любое число. Своего рода «универсальный признак делимости».  Признак делимости Паскаля: Натуральное число а разделится на другое натуральное число b только в том случае, если сумма произведений цифр числа а на соответствующие остатки, получаемые при делении разрядных единиц на число b, делится на это число. Например : число 2814 делится на 7, так как 2·6+8·2+1·3+4=35 делится на 7. (Здесь 6-остаток отделения 1000 на 7, 2- остаток от деления 100 на 7 и 3- остаток от деления 10 на 7).

Из истории математики

Блез Паскаль (родился в 1623 году) - один из самых знаменитых людей в истории человечества. Паскаль умер, когда ему было 39 лет, но, несмотря на столь короткую жизнь, вошел в историю как выдающийся математик, физик, философ и писатель. Его именем названы единица давления (паскаль) и весьма популярный сегодня язык программирования. Блез Паскаль нашёл общий алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число.

Признак Паскаля — метод, позволяющий получить признаки делимости на любое число. Своего рода «универсальный признак делимости».

Признак делимости Паскаля: Натуральное число а разделится на другое натуральное число b только в том случае, если сумма произведений цифр числа а на соответствующие остатки, получаемые при делении разрядных единиц на число b, делится на это число.

Например : число 2814 делится на 7, так как 2·6+8·2+1·3+4=35 делится на 7. (Здесь 6-остаток отделения 1000 на 7, 2- остаток от деления 100 на 7 и 3- остаток от деления 10 на 7).

Основные понятия   Вспомним некоторые математические понятия, которые нам будут необходимы при изучении данной темы:  Признак делимости  - это правило, по которому, не выполняя деления, можно установить, делится ли одно число на другое.  Делителем натурального числа а называют натуральное число b , на которое а делится без остатка.  Простыми называются натуральные числа, которые не имеют других натуральных различных делителей, кроме единицы и самого себя.

Основные понятия

Вспомним некоторые математические понятия, которые нам будут необходимы при изучении данной темы:

  • Признак делимости - это правило, по которому, не выполняя деления, можно установить, делится ли одно число на другое.

  • Делителем натурального числа а называют натуральное число b , на которое а делится без остатка.

  • Простыми называются натуральные числа, которые не имеют других натуральных различных делителей, кроме единицы и самого себя.

  • Составными называются числа, которые имеют и другие натуральные делители кроме 1 и самого себя.
Признаки делимости Все рассмотренные мною в данной работе признаки делимости натуральных чисел можно разделить на 4 группы:

Признаки делимости

Все рассмотренные мною в данной работе признаки делимости натуральных чисел можно разделить на 4 группы:

I . Делимость чисел определяется по последней (им) цифре (ам)

  • I . Делимость чисел определяется по последней (им) цифре (ам)

К первой группе рассмотренных мною признаков делимости натуральных чисел относятся признаки делимости на 2, 4, 5, 8, 20, 25, 50, 125 и разрядные единицы 10, 100 и т.д.

  • Признак делимости на 2 : число делится на 2 тогда, когда последняя цифра этого числа делится на 2 (т.е. последняя цифра является чётным числом).

Например : 3221786 4 : 2

  • Признак делимости на 4 : число делится на 4 тогда, когда две его последние цифры – нули, либо когда двузначное число, образованное двумя его последними цифрами, делится на 4.

Например:   353 24 : 4; 66 00 : 4

  • Признак делимости на 5 : число делится на 5 тогда, когда его последняя цифра - 5 или 0.

Например: 3678 0 : 5 или 12326 5 : 5

  • Признак делимости на 8: число делится на 8 тогда, когда на 8 делится трехзначное число, образованное из трех последних цифр этого числа.

Например: 432 240 : 8

  • Признак делимости на 20: число делится на 20 тогда, когда число, образованное двумя последними цифрами, делится на 20. (Другая формулировка: число делится на 20 тогда, когда последняя цифра числа — 0, а предпоследняя — чётная).

Например: 596 40 : 20

Признак делимости на 25: на 25 делятся числа, две последние цифры которых нули или образуют число, которое делится на 25. Например: 6679 75 : 25 или 77689 00 : 25  Признак делимости на 50: число делится на 50 тогда, когда число, образованное двумя его младшими десятичными цифрами, делится на 50. Например : 5643 50 : 50 или 5543 00 : 50  Признак делимости на 125: число делится на 125, если три его последние цифры нули или образуют число, которое делится на 125. Например: 32157 000 : 125 или 3216 250 : 125  Признаки делимости на разрядную единицу 10, 100, 1000 и т.д.:
  • Признак делимости на 25: на 25 делятся числа, две последние цифры которых нули или образуют число, которое делится на 25.

Например: 6679 75 : 25 или 77689 00 : 25

  • Признак делимости на 50: число делится на 50 тогда, когда число, образованное двумя его младшими десятичными цифрами, делится на 50.

Например : 5643 50 : 50 или 5543 00 : 50

  • Признак делимости на 125: число делится на 125, если три его последние цифры нули или образуют число, которое делится на 125.

Например: 32157 000 : 125 или 3216 250 : 125

  • Признаки делимости на разрядную единицу 10, 100, 1000 и т.д.: на разрядную единицу делятся те натуральные числа, у которых количество нулей больше или равно количеству нулей разрядной единицы.

Например, 12 000 делится на 10, 100 и 1000

II . Делимость чисел определяется по сумме цифр числа II . Делимость чисел определяется по сумме цифр числа К этой группе признаков делимости натуральных чисел относятся рассмотренные мною признаки делимости на 3, 9, 11  Признак делимости на 3: число делится на 3, если его сумма цифр делится на 3. Например:  5421 : 3 т.к. 5+4+2+1=12, (12:3)  Признак делимости на 9: число делится на 9, если его сумма цифр делится на 9. Например:  653022 : 9 т.к. 6+5+3+0+2+2=18, (18:9)  Признак делимости на 11: на 11 делятся те числа, у которых сумма цифр, стоящих на нечётных местах, либо равна сумме цифр, стоящих на чётных местах, либо отличается от неё на число, кратное 11. Например: 865948732:11 т.к. 8+5+4+7+2=26 и 6+9+8+3=26 (26=26); 815248742:11 т.к. 8+5+4+7+2=26 и 1+2+8+4=15, 26-15=11, (11:11)

II . Делимость чисел определяется по сумме цифр числа

  • II . Делимость чисел определяется по сумме цифр числа

К этой группе признаков делимости натуральных чисел относятся рассмотренные мною признаки делимости на 3, 9, 11

  • Признак делимости на 3: число делится на 3, если его сумма цифр делится на 3.

Например: 5421 : 3 т.к. 5+4+2+1=12, (12:3)

  • Признак делимости на 9: число делится на 9, если его сумма цифр делится на 9.

Например: 653022 : 9 т.к. 6+5+3+0+2+2=18, (18:9)

  • Признак делимости на 11: на 11 делятся те числа, у которых сумма цифр, стоящих на нечётных местах, либо равна сумме цифр, стоящих на чётных местах, либо отличается от неё на число, кратное 11.

Например: 865948732:11 т.к. 8+5+4+7+2=26 и 6+9+8+3=26 (26=26); 815248742:11 т.к. 8+5+4+7+2=26 и 1+2+8+4=15, 26-15=11, (11:11)

III . Делимость чисел определяется после выполнения каких-то действий над цифрами этого числа К этой группе признаков делимости натуральных чисел относятся признаки делимости на: 6, 7, 11, 13,17, 19, 23, 27, 29, 31, 33, 37, 41, 59, 79, 99, 101 Признак делимости на 6:  Признак 1: число делится на 6 тогда, когда результат вычитания удвоенного числа сотен из числа, стоящего после сотен делится на 6. Например: 138 : 6 т.к. 1·2=2, 38 – 2=36, (36:6); 744:6 т.к. 44 – 7·2=30, (30:6) Признак 2: число делится на 6 тогда и только тогда, когда учетверённое число десятков, сложенное с числом единиц делится на 6. Например: 768:6 т.к. 76·4+8=312, 31·4+2=126, 12·4+6=54 (54:6)  Признаки делимости на 7:  Признак 1: число делится на 7 тогда, когда утроенное число десятков, сложенное с числом единиц, делится на 7. Например: число 154:7, т.к. на 7 делятся 15·3 + 4 = 49 (49:7) Признак 2: число делится на 7 тогда, когда модуль алгебраической суммы чисел, образующих нечётные группы по три цифры (начиная с единиц), взятых со знаком «+», и чётных со знаком «-» делится на 7.  Например, 138689257:7, т.к. ǀ138-689+257ǀ=294 (294:7)

III . Делимость чисел определяется после выполнения каких-то действий

над цифрами этого числа

К этой группе признаков делимости натуральных чисел относятся признаки делимости на: 6, 7, 11, 13,17, 19, 23, 27, 29, 31, 33, 37, 41, 59, 79, 99, 101

Признак делимости на 6:

  • Признак 1: число делится на 6 тогда, когда результат вычитания удвоенного числа сотен из числа, стоящего после сотен делится на 6.

Например: 138 : 6 т.к. 1·2=2, 38 – 2=36, (36:6); 744:6 т.к. 44 – 7·2=30, (30:6)

  • Признак 2: число делится на 6 тогда и только тогда, когда учетверённое число десятков, сложенное с числом единиц делится на 6.

Например: 768:6 т.к. 76·4+8=312, 31·4+2=126, 12·4+6=54 (54:6)

Признаки делимости на 7:

  • Признак 1: число делится на 7 тогда, когда утроенное число десятков, сложенное с числом единиц, делится на 7.

Например: число 154:7, т.к. на 7 делятся 15·3 + 4 = 49 (49:7)

  • Признак 2: число делится на 7 тогда, когда модуль алгебраической суммы чисел, образующих нечётные группы по три цифры (начиная с единиц), взятых со знаком «+», и чётных со знаком «-» делится на 7.

Например, 138689257:7, т.к. ǀ138-689+257ǀ=294 (294:7)

Признаки делимости на 11:  Признак 1: число делится на 11 тогда, когда модуль разности между суммой цифр, занимающих нечётные позиции, и суммой цифр, занимающих чётные места делится на 11. Например, 9163627:11, т.к. ǀ(9+6+6+7)-(1+3+2)ǀ=22 (22:11) Признак 2: число делится на 11 тогда, когда на 11 делится сумма чисел, образующих группы по две цифры (начиная с единиц). Например, 103785:11, т.к. 10+37+85=132 и 01+32=33 (33:11)   Признаки делимости на 13:  Признак 1: число делится на 13 тогда, когда сумма числа десятков с учетверенным числом единиц делится на 13 Например, 845 :13, т.к. 84+5·4=104, 10+4·4=26 (26:13) Признак 2: число делится на 13 тогда, когда разность числа десятков с девятикратным числом единиц делится на 13. Например, 845 :13, т.к. 84-5·9=39 (39:13)  Признак делимости на 17: число делится на 17 тогда, когда модуль разности числа десятков и пятикратного числа единиц делится на 17. Например, 221:17, т.к. ǀ22-5·1ǀ=17   Признаки делимости на 19: число делится на 19 тогда, когда число десятков, с  ложенное с  удвоенным числом единиц, делится на 19.  Например, 646:19, т.к. 64+6·2=76, 7+2·6=19, (19:19)

Признаки делимости на 11:

  • Признак 1: число делится на 11 тогда, когда модуль разности между суммой цифр, занимающих нечётные позиции, и суммой цифр, занимающих чётные места делится на 11.

Например, 9163627:11, т.к. ǀ(9+6+6+7)-(1+3+2)ǀ=22 (22:11)

  • Признак 2: число делится на 11 тогда, когда на 11 делится сумма чисел, образующих группы по две цифры (начиная с единиц).

Например, 103785:11, т.к. 10+37+85=132 и 01+32=33 (33:11)

Признаки делимости на 13:

  • Признак 1: число делится на 13 тогда, когда сумма числа десятков с учетверенным числом единиц делится на 13

Например, 845 :13, т.к. 84+5·4=104, 10+4·4=26 (26:13)

  • Признак 2: число делится на 13 тогда, когда разность числа десятков с девятикратным числом единиц делится на 13.

Например, 845 :13, т.к. 84-5·9=39 (39:13)

Признак делимости на 17: число делится на 17 тогда, когда модуль разности числа десятков и пятикратного числа единиц делится на 17.

Например, 221:17, т.к. ǀ22-5·1ǀ=17

Признаки делимости на 19: число делится на 19 тогда, когда число десятков, с ложенное с удвоенным числом единиц, делится на 19.

Например, 646:19, т.к. 64+6·2=76, 7+2·6=19, (19:19)

Признаки делимости на 23:  Признак 1: число делится на 23 тогда, когда число сотен, сложенное с утроенным числом, образованным двумя последними цифрами, делится на 23. Например, 28842:23, т.к. 288+3·42=414, 4+3·14=46 (46:23) Признак 2: число делится на 23 тогда, когда число десятков, сложенное с семикратным числом единиц, делится на 23. Например, 391:23, т.к. 39+7·1=46  (46:23) Признак 3: число делится на 23 тогда, когда число сотен, сложенное с семикратным числом десятков и утроенным числом единиц, делится на 23. Например, 391:23, т.к. 3+7·9+3·1=69  (69:23)  Признак делимости на 27: число делится на 27 тогда, когда на 27 делится сумма чисел, образующих группы по три цифры (начиная с единиц). Например, 2705427:27 т.к. 427+705+2=1134, 134+1=135, (135:27)  Признак делимости на 29: число делится на 29 тогда, когда число десятков, сложенное с утроенным числом единиц, делится на 29 Например, 261:29, т.к. 26+3·1=29 (29:29)  Признак делимости на 31: число делится на 31 тогда, когда модуль разности числа десятков  и утроенного числа единиц делится на 31.  Например, 217:31, т.к. ǀ21-3·7ǀ= 0, (0:31)

Признаки делимости на 23:

  • Признак 1: число делится на 23 тогда, когда число сотен, сложенное с утроенным числом, образованным двумя последними цифрами, делится на 23.

Например, 28842:23, т.к. 288+3·42=414, 4+3·14=46 (46:23)

  • Признак 2: число делится на 23 тогда, когда число десятков, сложенное с семикратным числом единиц, делится на 23.

Например, 391:23, т.к. 39+7·1=46  (46:23)

  • Признак 3: число делится на 23 тогда, когда число сотен, сложенное с семикратным числом десятков и утроенным числом единиц, делится на 23.

Например, 391:23, т.к. 3+7·9+3·1=69  (69:23)

Признак делимости на 27: число делится на 27 тогда, когда на 27 делится сумма чисел, образующих группы по три цифры (начиная с единиц).

Например, 2705427:27 т.к. 427+705+2=1134, 134+1=135, (135:27)

Признак делимости на 29: число делится на 29 тогда, когда число десятков, сложенное с утроенным числом единиц, делится на 29

Например, 261:29, т.к. 26+3·1=29 (29:29)

Признак делимости на 31: число делится на 31 тогда, когда модуль разности числа десятков и утроенного числа единиц делится на 31.

Например, 217:31, т.к. ǀ21-3·7ǀ= 0, (0:31)

Признаки делимости на 33: если сумма, составленная при разбивании числа справа налево на группы по две цифры, делится на 33, то и число делится на 33.

Например, 396:33, т.к. 96+3=99 (99:33)

Признаки делимости на 37:

  • Признак 1 :  число делится на 37 тогда, когда при разбиении числа на группы по три цифры (начиная с единиц) сумма этих групп кратна 37.

Например , число 100048:37, т.к. 100+048=148, (148:37)

  • Признак 2: число делится на 37 тогда, когда на 37 делится модуль утроенного числа сотен, сложенного с учетверённым числом десятков, за вычетом числа единиц, умноженного на семь.

Например, число 481:37, так как на 37 делится ǀ3·4+4·8-7·1ǀ=37

Признаки делимости на 41:

  • Признак 1: число делится на 41 тогда, когда модуль разности числа десятков и четырёхкратного числа единиц делится на 41.

Например, 369:41, т.к.  ǀ36-4·9ǀ=0, (0:41)

  • Признак 2: чтобы проверить, делится ли число на 41, его следует справа налево разбить на группы по 5 цифр в каждой. Затем в каждой группе первую справа цифру умножить на 1, вторую цифру умножить на 10, третью — на 18, четвёртую — на 16, пятую — на 37 и все полученные произведения сложить. Если результат будет делиться на 41, тогда и само число будет делиться на 41.

Признак делимости на 59: число делится на 59 тогда, когда число десятков, сложенное с числом единиц, умноженное на 6, делится на 59. Например, 767:59, т.к. 76+7·6=118, 11+8·6=59, (59:59)  Признак делимости на 79: число делится на 79 тогда, когда число десятков, сложенное с числом единиц, умноженное на 8, делится на 79. Например, 711:79, т.к. 71+8·1=79, (79:79)  Признак делимости на 99: число делится на 99 тогда, когда на 99 делится сумма чисел, образующих группы по две цифры (начиная с единиц). Например, 12573:99, т.к. 1+25+73=99, (99:99)  Признак делимости на 101: число делится на 101 тогда, когда модуль алгебраической суммы чисел, образующих нечётные группы по две цифры (начиная с единиц), взятых со знаком «+», и чётных со знаком «–» делится на 101. Например , 590547:101, т.к. ǀ59-5+47ǀ=101, (101:101)

Признак делимости на 59: число делится на 59 тогда, когда число десятков, сложенное с числом единиц, умноженное на 6, делится на 59.

Например, 767:59, т.к. 76+7·6=118, 11+8·6=59, (59:59)

Признак делимости на 79: число делится на 79 тогда, когда число десятков, сложенное с числом единиц, умноженное на 8, делится на 79.

Например, 711:79, т.к. 71+8·1=79, (79:79)

Признак делимости на 99: число делится на 99 тогда, когда на 99 делится сумма чисел, образующих группы по две цифры (начиная с единиц).

Например, 12573:99, т.к. 1+25+73=99, (99:99)

Признак делимости на 101: число делится на 101 тогда, когда модуль алгебраической суммы чисел, образующих нечётные группы по две цифры (начиная с единиц), взятых со знаком «+», и чётных со знаком «–» делится на 101.

Например , 590547:101, т.к. ǀ59-5+47ǀ=101, (101:101)

IV . Для определения делимости числа используются другие признаки делимости

К этой группе признаков делимости натуральных чисел относятся признаки делимости на: 6, 12, 14, 15, 27, 30, 60 и т.д. Эти все числа - составные. Признаки делимости составных чисел строятся на признаках делимости простых чисел, на которые можно разложить любое составное число.

Признак делимости на 6: число делится на 6 тогда, когда оно делится и на 2, и на 3, то есть, если оно четное и сумма его цифр делится на 3.

Например, 768:6, т.к. 7+6+8=21 (21:3) и последняя цифра в числе 768 – четная.

Признак делимости на 12 : число делится на 12, тогда, когда оно одновременно делится на 3 и на 4.

Например, 408:12, т.к. 4+0+8=12 (12:3) и две последние цифры делятся на 4 (08:4)

Признак делимости на 14: число делится на 14 тогда, когда оно делится на 2 и на 7.

Например, число 45612:14 т. к. оно делится и на 2 и на 7 , значит, оно делится и на 14

Признак делимости на 15: число делится на 15 тогда, когда оно делится на 3 и на 5.

Например, 1146795:15 т.к. это число делится и на 3 и на 5

Признаки делимости на 27: число делится на 27 тогда, когда оно делится на 3 и на 9. Например, 511704:27 т.к. 5+1+1+7+0+4=18, (18:3 и 18:9)

Признаки делимости на 30: число делится на 30 тогда, когда оно заканчивается на 0 и сумма всех цифр делится на 3. Например, 510:30 т.к. 5+1+0=6 (6:3) и в числе 510 (последняя цифра 0)  Признаки делимости на 60: для того, чтобы число делилось на 60, необходимо и достаточно, чтобы оно делилось на 4, на 3, на 5. Например, 1620:60 т.к. 1+6+2+0=9 (9:3), число 1620 заканчивается 0, т.е. делится на 5 и 1620 : 4 т.к. две последние цифры 20:4

Признаки делимости на 30: число делится на 30 тогда, когда оно заканчивается на 0 и сумма всех цифр делится на 3.

Например, 510:30 т.к. 5+1+0=6 (6:3) и в числе 510 (последняя цифра 0)

Признаки делимости на 60: для того, чтобы число делилось на 60, необходимо и достаточно, чтобы оно делилось на 4, на 3, на 5.

Например, 1620:60 т.к. 1+6+2+0=9 (9:3), число 1620 заканчивается 0, т.е. делится на 5 и 1620 : 4 т.к. две последние цифры 20:4

Применение признаков делимости на практике Работа имеет практическое применение. Ее могут использовать школьники и взрослые при решении реальных ситуаций; учителя, как при проведении уроков по математике, так и на факультативных курсах и дополнительных занятий на повторение. Данное исследование будет полезным для учащихся при самостоятельной подготовке к выпускным и вступительным экзаменам. А также будет полезно и для учеников, целью которых стали высокие места на городских олимпиадах .   Задача № 1 . Можно ли, используя только цифры 3 и 4, записать:

Применение признаков делимости на практике

Работа имеет практическое применение. Ее могут использовать школьники и взрослые при решении реальных ситуаций; учителя, как при проведении уроков по математике, так и на факультативных курсах и дополнительных занятий на повторение.

Данное исследование будет полезным для учащихся при самостоятельной подготовке к выпускным и вступительным экзаменам. А также будет полезно и для учеников, целью которых стали высокие места на городских олимпиадах .

Задача № 1 . Можно ли, используя только цифры 3 и 4, записать:

  • число, которое делиться на 10;
  • четное число;
  • число, кратное 5;
  • нечетное число

Задача № 3 : Найдите наибольшее четырехзначное число, все цифры которого различны и которое делится на 2, 5, 9, 11.

Ответ: 8910

Задача № 4: Оля задумала простое трехзначное число, все цифры которого различны. На какую цифру оно может заканчиваться, если его последняя цифра равна сумме первых двух. Приведите примеры таких чисел.

Ответ: только на 7. Есть 4 числа удовлетворяющие условию задачи: 167, 257, 347, 527

Задача № 5 : В двух классах вместе 70 учеников. В одном классе 7/17 учеников не явились на занятия, а в другом 2/9 получили отличные отметки по математике. Сколько учеников в каждом классе?

Решение: В первом из этих классов могло быть: 17, 34, 51… - числа, кратные 17. Во втором классе: 9, 18, 27, 36, 45, 54… - числа, кратные 9. Нам нужно выбрать 1 число из первой последовательности, а 2 число из второй так, чтобы они в сумме давали 70. Причем в этих последовательностях только небольшое число членов могут выражать возможное количество детей в классе. Это соображение существенно ограничивает перебор вариантов. Возможным единственным вариантом оказалась пара (34, 36).

Задача № 6 : В 9 классе за контрольную работу 1/7 учеников получили пятёрки, 1/3 – четверки, ½ - тройки. Остальные работы оказались неудовлетворительными. Сколько было таких работ?

Решение: Решением задачи должно являться число, кратное числам: 7, 3, 2. Найдем сначала наименьшее из таких чисел. НОК (7, 3, 2) = 42. Можно составить выражение по условию задачи: 42 – (42 : 7 + 42 : 3 + 42 : 2) = 1 – 1 неуспевающий. Математические отношение отношения задачи допускают, что число учеников в классе 84, 126 и т.д. человек. Но из соображений здравого смысла следует, что наиболее приемлемым ответом является число 42.

Ответ: 1 работа.

Заключение:  В результате выполнения данной работы я узнала, что кроме известных мне признаков делимости на 2, 3, 5, 9 и 10 существуют еще и другие признаки делимости натуральных чисел. Полученные знания значительно ускоряют решение многих задач. И я смогу использовать эти знания в своей учебной деятельности, как на уроках математики, так и во внеклассных занятиях. Следует так же отметить, что формулировки некоторых признаков делимости сложные. Может быть, поэтому они не изучаются в школе. Предполагаю и в дальнейшем продолжить работу по изучению признаков делимости натуральных чисел.

Заключение:

В результате выполнения данной работы я узнала, что кроме известных мне признаков делимости на 2, 3, 5, 9 и 10 существуют еще и другие признаки делимости натуральных чисел. Полученные знания значительно ускоряют решение многих задач. И я смогу использовать эти знания в своей учебной деятельности, как на уроках математики, так и во внеклассных занятиях. Следует так же отметить, что формулировки некоторых признаков делимости сложные. Может быть, поэтому они не изучаются в школе. Предполагаю и в дальнейшем продолжить работу по изучению признаков делимости натуральных чисел.

Библиографический список:

Библиографический список:

  • Энциклопедический словарь юного математика. Савин А.П. Москва «Педагогика» 1989.
  • Математика. Дополнительные материалы к уроку математики 5-11 классы. Рязановский А.Р., Зайцев Е.А. Москва «Дрофа» 2002.
  • За страницами учебника математики. Виленкин Н.Я., Депман И.Я. М.: Просвещение, 1989.
  • Внеклассная работа по математике в 6-8 классах. Москва. «Просвещение» 1984 г. В. А. Гусев, А. И. Орлов, А. Л. Розенталь.
  • «1001 вопрос и ответ. Большая книга знаний» Москва. «Мир книги» 2004.
  • Факультативный курс по математике. Никольская И.Л. – Москва. Просвещение 1991.
  • Олимпиадные задачи по математике и методы их решения. Фарков А. В. - Москва. 2003г.
  • Интернет ресурсы.


Получите в подарок сайт учителя

Предмет: Математика

Категория: Мероприятия

Целевая аудитория: Прочее

Скачать
Признаки делимости натуральных чисел

Автор: Васильева Лариса Владимировна

Дата: 08.06.2015

Номер свидетельства: 218402

Похожие файлы

object(ArrayObject)#863 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(96) "Признаки делимости натуральных чисел на 2, на 5 и на 10."
    ["seo_title"] => string(47) "priznakidielimostinaturalnykhchisielna2na5ina10"
    ["file_id"] => string(6) "304021"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1457631344"
  }
}
object(ArrayObject)#885 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(107) "Тест по математике "Признаки делимости натуральных чисел" "
    ["seo_title"] => string(62) "tiest-po-matiematikie-priznaki-dielimosti-natural-nykh-chisiel"
    ["file_id"] => string(6) "190096"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "testi"
    ["date"] => string(10) "1427104868"
  }
}
object(ArrayObject)#863 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(123) "Конспект урока по математике на тему "Делимость натуральных чисел.""
    ["seo_title"] => string(71) "konspiekt_uroka_po_matiematikie_na_tiemu_dielimost_natural_nykh_chisiel"
    ["file_id"] => string(6) "442403"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1512489715"
  }
}
object(ArrayObject)#885 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(52) "Делимости натуральных чисел"
    ["seo_title"] => string(28) "delimosti_naturalnykh_chisel"
    ["file_id"] => string(6) "500629"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1550639351"
  }
}
object(ArrayObject)#863 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(87) "Делимость натуральных чисел. Математика 6 класс"
    ["seo_title"] => string(50) "dielimost_natural_nykh_chisiel_matiematika_6_klass"
    ["file_id"] => string(6) "374428"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1483010217"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1240 руб.
2070 руб.
1580 руб.
2640 руб.
1410 руб.
2350 руб.
1580 руб.
2640 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства