kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

КЕЙС. "Тяжкое бремя ЕГЭ"

Нажмите, чтобы узнать подробности

Задания  №12 ЕГЭ(профильный ) по математике это -  задачи на выполнение действий с функциями и производными функций, исследование функций. Задание на вычисление с помощью производной точек экстремума данной функции или наибольшего (наименьшего) значения данной функции на данном отрезке.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«КЕЙС. "Тяжкое бремя ЕГЭ"»

КЕЙС. "Тяжкое бремя ЕГЭ" . 3 ГРУППА

Задания №12 ЕГЭ(профильный ) по математике это - задачи на выполнение действий с функциями и производными функций, исследование функций. Задание на вычисление с помощью производной точек экстремума данной функции или наибольшего (наименьшего) значения данной функции на данном отрезке.

Конечно же, с необходимостью изучения способов решения прототипов связаны проблемы с тем, что с заданиями этого типа на диагностических работах справляются единицы.

Производная – одно из самых важных понятий математического анализа. Знание производной позволяет решать многочисленные задачи по физике, алгебре и геометрии.

Конечно, при решении некоторых задач можно увидеть методы и средства без понимания теории производной.

Настаиваю на том, чтобы вы изучили и поняли теорию, тогда никакая задача в этой теме затруднений не вызовет.

Итак, что для решения задач В14 необходимо знать:

1. Таблицу производных и правила дифференцирования.

2. Правила дифференцирования сложной функции.

3.Необходимый признак возрастания (убывания) функций.

4. Понятия экстремумов (точки минимума, максимума).

5. Применение производной для нахождения наибольшего и наименьшего значений функции.

Помимо проблемы итоговой аттестации возникают вопросы и сомнения, в какой мере приобретаемые в этой области знания могут и будут востребованы в дальнейшем, насколько оправданы как затраты времени, так и здоровья на изучение этой темы.

Перед собой поставьте вопрос: зачем нужна производная? Где мы встречаемся с производной и используем её? Можно ли без нее обойтись в математике и не только?

ЗАДАНИЯ: Применение производной для нахождения точек экстремума функции. Разработать и предоставить на уроке не менее трех рекомендаций к ликвидации пробелов по теме, рассказать доступно, доходчиво, используя пример.



1 . Найти наименьшее значение функции у =(х+7)ех+8 на отрезке [-9; -7]

2 . Найдите наибольшее значение функции

3. Найдите точку минимума функции

4 . Найдите наименьшее значение функции

5. Найдите точку минимума функции



ОЦЕНОЧНЫЙ ЛИСТ

по теме «Применение производной в задачах ЕГЭ».



№ п/п

Ф.И. учащегося

Теоретические сведения

Исследование функций на монотонность

Исследование функций на экстремумы

Нахождение наиб. и наим. значений функции

Оценка (ставит ученик)

Итоговая оценка учителя

1.








2.








3.








4.








5.








6.










Условные знаки для самодиагностики учащегося.

+ Отлично изучил тему.

+, – Есть пробелы, но я. их решу самостоятельно.

–, + Были пробелы, но я их решил на уроке или с помощью одноклассников.

– Тема усвоена непрочно, нужна помощь учителя.

P.S. Колонки оценочного листа, заполняемые самими учениками (см. условные обозначения), не влияют на оценку ученика за урок.













Оказывается также, что с помощью производной можно упрощать алгебраические и тригонометрические выражения, раскладывать на множители, доказывать тождества и неравенства и, даже, решать вопрос о существовании корней квадратного уравнения.

На практике часто приходится решать так называемые задачи на оптимизацию (optimum-наилучший) . Инженеры-технологи стараются так организовать производство, чтобы выпускалось как можно больше продукции; конструкторы пытаются разработать прибор для космического корабля так, чтобы масса прибора была наименьшей; экономисты стараются спланировать связи завода с источниками сырья так , чтобы транспортные расходы оказались минимальными и т.д.






Получите в подарок сайт учителя

Предмет: Математика

Категория: Планирование

Целевая аудитория: 11 класс

Скачать
КЕЙС. "Тяжкое бремя ЕГЭ"

Автор: Любовь Геннадьевна Акишина

Дата: 15.11.2023

Номер свидетельства: 639935


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства