kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Рабочая программа по математике

Нажмите, чтобы узнать подробности

Рабочая программа разработана в соответствии с ФГОС.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Рабочая программа по математике»



I.Пояснительная записка

Рабочая программа по математике в 5-9 классах составлена на основании следующих документов:

-Федерального закона Российской Федерации от 29 декабря 2012 г. № 279-ФЗ «Об образовании в Российской Федерации»;

-Приказа Министерства образования и науки РФ от 5 марта 2004 г. N 1089
"Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования" с изменениями и дополнениями от 3 июня 2008 г., 31 августа, 19 октября 2009 г., 10 ноября 2011 г., 24, 31 января 2012 г., 23 июня 2015 г., 7 июня 2017 г.;

- Приказа Министерства образования и науки Российской Федерации от 31 декабря 2015 г. № 1577 «О внесении изменений в федеральный государственный образовательный стандарт основного общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 17 декабря 2010 г. № 1897»;

-Примерная основная образовательная программа основного общего образования, одобренная федеральным учебно-методическим объединением по общему образованию (протокол от 8.04.2015 г. №1/15 в ред. протокола N 3/15 от 28.10.2015);

- Письма Министерства образования и науки РФ от 28 октября 2015 г. № 08-1786 “О рабочих программах учебных предметов”;

- Приказа Министерства образования и науки Российской Федерации от 31 марта 2014 года № 253 «Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования» (с изменениями и дополнениями от 8 июня, 28 декабря 2015., 26 января,21 апреля 2016 г.,8,20 июня, 5 июля 2017.);

- . Рабочей программы по учебному курсу "Математика" для 5-6 классов составленной на основе авторской программы "С.М. Никольского, М.К. Потапова, Н.Н. Решетникова, А.В. Шевкина "Математика 5", "Математика 6" изданной в сборнике "Сборник рабочих программ Математика 5-6 классы", составитель Т.А. Бурмистрова, - М.: Просвещение, 2014", курса "Алгебра 7", "Алгебра 8", Алгебра 9" С.М. Никольского, М.К. Потапова, Н.Н. Решетникова, А.В. Шевкина - "Сборник рабочих программ Алгебра 7-9 классы" - составитель Т.А. Бурмистрова, - М.: Просвещение, 2014, курса "Геометрия 7", "Геометрия 8", Геометрия 9" Л.С. Атанасяна, В.Ф. Бутузова, С.Б. Кадомцева и др - "Сборника рабочих программ Геометрия 7-9 классы" - составитель Т.А. Бурмистрова, - М.: Просвещение, 2014,

- Санитарно-эпидемиологические правила и нормативы. СанПиН 2.4.2.2821-10. Постановление Главного государственного санитарного врача Российской Федерации № 189 от 29 декабря 2010 г. «Об утверждении СанПиН 2.4.2.2821-10 «Санитарно-эпидемиологические требования к условиям и организации обучения в общеобразовательных учреждениях».

- Основной образовательной программы основного общего образования МКОУ СОШ с.Комаровка.

-Учебного плана. Календарного графика и положения о рабочей программе МКОУ СОШ с.Комаровка.







Цели и задачи курса:



Математическое образование является обязательной и неотъемлемой частью общего образования на всех ступенях школы. Обучение математике в основной школе направлено на достижение следующих целей:

в направлении личностного развития:

  • формирование представлений о математике как части общечеловеческой культуры, о значимости математики в развитии цивилизации и современного общества;

  • развитие логического и критического мышления, культуры речи, способности к умственному эксперименту;

  • формирование интеллектуальной честности и объективности, способности к преодолению мыслительных стереотипов, вытекающих из обыденного опыта;

  • воспитание качеств личности, обеспечивающих соци­альную мобильность, способность принимать самостоятельные решения;

  • формирование качеств мышления, необходимых для адаптации в современном информационном обществе;

  • развитие интереса к математическому творчеству и математических способностей;

в метапредметном направлении:

  • развитие представлений о математике как форме описания и методе познания действительности, создание условий для приобретения первоначального опыта математического моделирования;

  • формирование общих способов интеллектуальной деятельности, характерных для математики и являющихся основой познавательной культуры, значимой для различных сфер человеческой деятельности;

в предметном направлении:

  • овладение математическими знаниями и умениями, необходимыми для продолжения образования, изучения смеж­ных дисциплин, применения в повседневной жизни; создания культурно-исторической среды обучения. На него не выделяется специальных уроков, усвоение его не контролируется, но содержание этого раздела органично присутствует в учебном процессе как своего рода гуманитарный фон при рас­смотрении проблематики основного содержания математического образования.

Математическое образование играет важную роль как в практической, так и в духовной жизни общества. Практическая сторона математического образования связана с формированием способов деятельности, духовная —с интеллектуальным развитием человека, формированием характера и общей культуры.

Практическая полезность математики обусловлена тем, что ее предметом являются фундаментальные структуры реального мира: пространственные формы и количественные отношения — от простейших, усваиваемых в непосредственном опыте, до достаточно сложных, необходимых для развития научных и технологических идей. Без конкретных математических знаний затруднено понимание принципов устройства и использования современной техники, восприятие и интерпретация разнообразной социальной, экономической, политической информации, малоэффективна повседневная практическая деятельность. Каждому человеку в своей жизни приходится выполнять достаточно сложные расчеты, находить в справочниках нужные формулы и применять их, владеть практическими приемами геометрических измерений и построений, читать информацию, представленную в виду таблиц, диаграмм, графиков, понимать вероятностный характер случайных событий, составлять несложные алгоритмы и др.

Без базовой математической подготовки невозможно стать образованным современным человеком. В школе математика служит опорным предметом для изучения смежных дисциплин. В послешкольной жизни реальной необходимостью в наши дни является непрерывное образование, что требует полноценной базовой общеобразовательной подготовки, в том числе и математической. И наконец, все больше специальностей, где необходим высокий уровень образования, связано с непосредственным применением математики (экономика, бизнес, финансы, физика, химия, техника, информатика, биология, психология и др.). Таким образом, расширяется круг школьников, для которых математика становится значимым предметом.

Для жизни в современном обществе важным является формирование математического стиля мышления, проявляющегося в определенных умственных навыках. В процессе математической деятельности в арсенал приемов и методов че­ловеческого мышления естественным образом включаются индукция и дедукция, обобщение и конкретизация, анализ и синтез, классификация и систематизация, абстрагирование и аналогия. Объекты математических умозаключений и правила их конструирования вскрывают механизм логических построений, вырабатывают умения формулировать, обосновывать и доказывать суждения, тем самым развивают логическое мышление. Ведущая роль принадлежит математике в формировании алгоритмического мышления и воспитании умений действовать по заданному алгоритму и конструировать новые. В ходе решения задач — основной учебной деятельности на уроках математики — развиваются творческая и прикладная стороны мышления.

Обучение математике дает возможность развивать у учащихся точную, экономную и информативную речь, умение отбирать наиболее подходящие языковые (в частности, символические, графические) средства.

Математическое образование вносит свой вклад в формирование общей культуры человека. Необходимым компонентом общей культуры в современном толковании является общее знакомство с методами познания действительности, представление о предмете и методе математики, его отличия от методов естественных и гуманитарных наук, об особенностях применения математики для решения научных и прикладных задач.

Изучение математики способствует эстетическому воспитанию человека, пониманию красоты и изящества математических рассуждений, восприятию геометрических форм, усвоению идеи симметрии.

История развития математического знания дает возможность пополнить запас историко-научных знаний школьников, сформировать у них представления о математике как части общечеловеческой культуры. Знакомство с основными историческими вехами возникновения и развития математической науки, с историей великих открытий, именами людей, творивших науку, должно войти в интеллектуальный багаж каждого культурного человека.







Учебно-методический комплект



  1. Математика 5 класс: учебник для общеобразовательных учреждений. /С.М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин – Изд. 11-е. – М.: Просвещение, 2012.

  2. Математика 6 класс: учебник для общеобразовательных учреждений. /С.М. Никольский, М. К. Потапов, Н. Н. Решетников, А. В. Шевкин – Изд. 11-е. – М.: Просвещение, 2012.

  3. Математика 5 класс: дидактические материалы по математике/ М. К .Потапов , А В. Шевкин – М.: Просвещение, 2015.

  4. Математика 6 класс: дидактические материалы по математике/ М. К .Потапов , А В. Шевкин – М.: Просвещение, 2015.

  5. Математика 5 класс: рабочая тетрадь по математике в 2-х частях: пособие для учащихся общеобразовательных учреждений/ М .К. Потапов , А. В. Шевкин – М.: Просвещение, 2012.

  6. Математика 6 класс: рабочая тетрадь по математике в 2-х частях: пособие для учащихся общеобразовательных учреждений/ М .К. Потапов , А. В. Шевкин – М.: Просвещение, 2012.

  7. Математика 5 класс: тематические тесты/ П. В. Чулков, Е. Ф. Шершнев, О .Ф Зарапина - М.: Просвещение, 2011.

  8. Математика 6 класс: тематические тесты/ П. В. Чулков, Е. Ф. Шершнев, О .Ф Зарапина - М.: Просвещение, 2011.

  9. Математика 5-6 класс: книга для учителя/ М. К. Потапов , А. В .Шевкин – М.: Просвещение, 2011.

  10. Задачи на смекалку 5-6 классы: И. Ф. Шарыгин, А.В. Шевкин пособие для учащихся обще образовательных учреждений/- М.: Просвещение, 2013

  11. Учебник: Алгебра 7. / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин / М.: Просвещение, 2009г.

  12. Учебник: Алгебра 8. / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин / М.: Просвещение, 2009г.

  13. Учебник: Алгебра 9. / С.М.Никольский, М.К.Потапов, Н.Н.Решетников, А.В.Шевкин / М.: Просвещение, 2009г.

  14. Алгебра: Рабочая тетрадь для 7,8,9 классов общеобразовательных учреждений: [С.Г.Журавлёв, Ю.В.Перепёлкина] – М.: Экзамен, 2016 и новее;

  15. Глазков Ю.А., Камаев П.М. Рабочая тетрадь по геометрии: 7,8,9 классы: к учебнику Л.С.Атанасяна и др. «Геометрия. 7-9 классы» - М.: Издательство «Экзамен», 2016 и новее.

  16. Дидактические материалы по алгебре.7 класс. / М.К.Потапов, А.В.Шевкин / М: Просвещение, 2014г

  17. Дидактические материалы по алгебре.8 класс. / М.К.Потапов, А.В.Шевкин / М: Просвещение, 2014г

  18. Дидактические материалы по алгебре.9 класс. / М.К.Потапов, А.В.Шевкин / М: Просвещение, 2002г

  19. Лысенко Ф.Ф. Алгебра. 9 класс. Подготовка к государственной итоговой аттестации 2010: учебно-методическое пособие Ростов на Дону: Легион М,2014.

  20. Лысенко Ф.Ф. Алгебра. 9 класс. Тематические тесты для подготовки к государственной итоговой аттестации 2010: учебно-методическое пособие Ростов на Дону: Легион М,2015.

  21. Математические диктанты 7-9 классы / Конте А.С./Волгоград, 2014

  22. Геометрия, 7-9 класс: учебник для общеобразовательных учреждений./Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина – Изд.7-е – М.: Просвещение 2017 г.

  23. Тесты по геометрии. 7 класс. К учебнику Л. С. Атанасян « Геометрия. 7-9 классы». ФГОС 2015г.

  24. Тесты по геометрии. 8 класс. К учебнику Л. С. Атанасян « Геометрия. 7-9 классы». ФГОС 2015 г.

  25. Тесты по геометрии. 9 класс. К учебнику Л. С. Атанасян « Геометрия. 7-9 классы». ФГОС 2015г.

  26. Геометрия. 7 класс. Рабочая тетрадь к учебнику Атанасяна Л. С. « Геометрия. 7-9 классы». ФГОС.

  27. Геометрия. 8 класс. Рабочая тетрадь к учебнику Атанасяна Л. С. « Геометрия. 7-9 классы». ФГОС.

  28. Геометрия. 9 класс. Рабочая тетрадь к учебнику Атанасяна Л. С. « Геометрия. 7-9 классы». ФГОС.


Место учебного предмета в Федеральном базисном учебном

(образовательном) плане.


Базисный учебный (образовательный) план на изучение математики в основной школе отводит 5 учебных часов в неделю в течение каждого года обучения, всего 870 уроков. Согласно Базисного учебного (образовательного) плана в 5—6 классах изучается предмет «Математика» (интегрированный предмет), в 7—9 классах - «Математика» (включающий разделы «Алгебра» и «Геометрия»)

Предмет «Математика» в 5—6 классах включает арифметический материал, элементы алгебры и геометрии, а также элементы вероятностно-статистической линии.

Предмет «Математика» в 7 – 9 классах включает в себя некоторые вопросы арифметики, развивающие числовую линию 5–6 классов, алгебраический материал, элементарные функции, элементы вероятностно-статистической линии, а также геометрический материал, традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометрические преобразования.

Раздел «Алгебра» включает некоторые вопросы арифметики, развивающие числовую линию 5—6 классов, собственно алгебраический материал, элементарные функции.

В рамках учебного раздела «Геометрия» традиционно изучаются, евклидова геометрия, элементы векторной алгебры, геометрические преобразования.



II. Планируемые результаты учебного предмета

Стандарт устанавливает требования к результатам освоения обучающимися основной образовательной программы:

личностным, включающим готовность и способность обучающихся к саморазвитию и личностному самоопределению, сформированность их мотивации к обучению и целенаправленной познавательной деятельности, системы значимых социальных и межличностных отношений, ценностно-смысловых установок, отражающих личностные и гражданские позиции в деятельности, правосознание, экологическую культуру, способность ставить цели и строить жизненные планы, способность к осознанию российской гражданской идентичности в поликультурном социуме;

метапредметным, включающим освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные), способность их использования в познавательной и социальной практике, самостоятельность в планировании и осуществлении учебной деятельности и организации учебного сотрудничества с педагогами и сверстниками, способность к построению индивидуальной образовательной траектории, владение навыками учебно-исследовательской, проектной и социальной деятельности;

предметным, включающим освоенные обучающимися в ходе изучения учебного предмета умения, специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, владение научной терминологией, ключевыми понятиями, методами и приемами.

7. Личностные результаты освоения основной образовательной программы должны отражать:

1) российскую гражданскую идентичность, патриотизм, уважение к своему народу, чувства ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее многонационального народа России, уважение государственных символов (герб, флаг, гимн);

2) гражданскую позицию как активного и ответственного члена российского общества, осознающего свои конституционные права и обязанности, уважающего закон и правопорядок, обладающего чувством собственного достоинства, осознанно принимающего традиционные национальные и общечеловеческие гуманистические и демократические ценности;

3) готовность к служению Отечеству, его защите;

4) сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, а также различных форм общественного сознания, осознание своего места в поликультурном мире;

5) сформированность основ саморазвития и самовоспитания в соответствии с общечеловеческими ценностями и идеалами гражданского общества; готовность и способность к самостоятельной, творческой и ответственной деятельности;

6) толерантное сознание и поведение в поликультурном мире, готовность и способность вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели и сотрудничать для их достижения;

7) навыки сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной, учебно-исследовательской, проектной и других видах деятельности;

8) нравственное сознание и поведение на основе усвоения общечеловеческих ценностей;

9) готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

10) эстетическое отношение к миру, включая эстетику быта, научного и технического творчества, спорта, общественных отношений;

11) принятие и реализацию ценностей здорового и безопасного образа жизни, потребности в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью, неприятие вредных привычек: курения, употребления алкоголя, наркотиков;

12) бережное, ответственное и компетентное отношение к физическому и психологическому здоровью, как собственному, так и других людей, умение оказывать первую помощь;

13) осознанный выбор будущей профессии и возможностей реализации собственных жизненных планов; отношение к профессиональной деятельности как возможности участия в решении личных, общественных, государственных, общенациональных проблем;

14) сформированность экологического мышления, понимания влияния социально-экономических процессов на состояние природной и социальной среды; приобретение опыта эколого-направленной деятельности;

15) ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни.

7.1. Личностные результаты освоения адаптированной основной образовательной программы должны отражать:

1) для глухих, слабослышащих, позднооглохших обучающихся:

способность к социальной адаптации и интеграции в обществе, в том числе при реализации возможностей коммуникации на основе словесной речи (включая устную коммуникацию), а также, при желании, коммуникации на основе жестовой речи с лицами, имеющими нарушения слуха;

2) для обучающихся с нарушениями опорно-двигательного аппарата:

владение навыками пространственной и социально-бытовой ориентировки;

умение самостоятельно и безопасно передвигаться в знакомом и незнакомом пространстве с использованием специального оборудования;

способность к осмыслению и дифференциации картины мира, ее временно-пространственной организации;

способность к осмыслению социального окружения, своего места в нем, принятие соответствующих возрасту ценностей и социальных ролей;

3) для обучающихся с расстройствами аутистического спектра:

формирование умения следовать отработанной системе правил поведения и взаимодействия в привычных бытовых, учебных и социальных ситуациях, удерживать границы взаимодействия;

знание своих предпочтений (ограничений) в бытовой сфере и сфере интересов.

8. Метапредметные результаты освоения основной образовательной программы должны отражать:

1) умение самостоятельно определять цели деятельности и составлять планы деятельности; самостоятельно осуществлять, контролировать и корректировать деятельность; использовать все возможные ресурсы для достижения поставленных целей и реализации планов деятельности; выбирать успешные стратегии в различных ситуациях;

2) умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;

3) владение навыками познавательной, учебно-исследовательской и проектной деятельности, навыками разрешения проблем; способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания;

4) готовность и способность к самостоятельной информационно-познавательной деятельности, владение навыками получения необходимой информации из словарей разных типов, умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;

5) умение использовать средства информационных и коммуникационных технологий (далее - ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

6) умение определять назначение и функции различных социальных институтов;

7) умение самостоятельно оценивать и принимать решения, определяющие стратегию поведения, с учетом гражданских и нравственных ценностей;

8) владение языковыми средствами - умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства;

9) владение навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, границ своего знания и незнания, новых познавательных задач и средств их достижения.

8.1. Метапредметные результаты освоения адаптированной основной образовательной программы должны отражать:

1) для глухих, слабослышащих, позднооглохших обучающихся:

владение навыками определения и исправления специфических ошибок (аграмматизмов) в письменной и устной речи;

2) для обучающихся с расстройствами аутентического спектра:

способность планировать, контролировать и оценивать собственные учебные действия в соответствии с поставленной задачей и условиями ее реализации при сопровождающей помощи педагогического работника и организующей помощи тьютора;

овладение умением определять наиболее эффективные способы достижения результата при сопровождающей помощи педагогического работника и организующей помощи тьютора;

овладение умением выполнять действия по заданному алгоритму или образцу при сопровождающей помощи педагогического работника и организующей помощи тьютора;

овладение умением оценивать результат своей деятельности в соответствии с заданными эталонами при организующей помощи тьютора;

овладение умением адекватно реагировать в стандартной ситуации на успех и неудачу, конструктивно действовать даже в ситуациях неуспеха при организующей помощи тьютора;

овладение умением активного использования знаково-символических средств для представления информации об изучаемых объектах и процессах, различных схем решения учебных и практических задач при организующей помощи педагога-психолога и тьютора;

способность самостоятельно обратиться к педагогическому работнику (педагогу-психологу, социальному педагогу) в случае личных затруднений в решении какого-либо вопроса;

способность самостоятельно действовать в соответствии с заданными эталонами при поиске информации в различных источниках, критически оценивать и интерпретировать получаемую информацию из различных источников.



Предметные результаты ООО

Математика

Выпускник научится в 5-6 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

  • Оперировать на базовом уровне1 понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях.

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания.

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число;

  • использовать свойства чисел и правила действий с рациональными числами при выполнении вычислений;

  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

  • выполнять округление рациональных чисел в соответствии с правилами;

  • сравнивать рациональные числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Статистика и теория вероятностей

  • Представлять данные в виде таблиц, диаграмм,

  • читать информацию, представленную в виде таблицы, диаграммы.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить модель условия задачи (в виде таблицы, схемы, рисунка), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

  • составлять план решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное отношение двух чисел, находить процентное снижение или процентное повышение величины;

  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых величин в задаче (делать прикидку)

Наглядная геометрия

Геометрические фигуры

  • Оперировать на базовом уровне понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырехугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар. Изображать изучаемые фигуры от руки и с помощью линейки и циркуля.

В повседневной жизни и при изучении других предметов:

  • решать практические задачи с применением простейших свойств фигур.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади прямоугольников;

  • выполнять простейшие построения и измерения на местности, необходимые в реальной жизни.

История математики

  • описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей.

Выпускник получит возможность научиться в 5-6 классах (для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях)

Элементы теории множеств и математической логики

  • Оперировать2 понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность,

  • определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания.

В повседневной жизни и при изучении других предметов:

  • распознавать логически некорректные высказывания;

  • строить цепочки умозаключений на основе использования правил логики.

Числа

  • Оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, геометрическая интерпретация натуральных, целых, рациональных;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приемов рациональных вычислений, обосновывать алгоритмы выполнения действий;

  • использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11, суммы и произведения чисел при выполнении вычислений и решении задач, обосновывать признаки делимости;

  • выполнять округление рациональных чисел с заданной точностью;

  • упорядочивать числа, записанные в виде обыкновенных и десятичных дробей;

  • находить НОД и НОК чисел и использовать их при решении зада;.

  • оперировать понятием модуль числа, геометрическая интерпретация модуля числа.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять числовые выражения и оценивать их значения при решении практических задач и задач из других учебных предметов.

Уравнения и неравенства

  • Оперировать понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство.

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое,

  • извлекать, информацию, представленную в таблицах, на диаграммах;

  • составлять таблицы, строить диаграммы на основе данных.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах и на диаграммах, отражающую свойства и характеристики реальных процессов и явлений.

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение); выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задачи указанных типов.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета.

Наглядная геометрия

Геометрические фигуры

  • Извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

  • изображать изучаемые фигуры от руки и с помощью компьютерных инструментов.

Измерения и вычисления

  • выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • вычислять площади прямоугольников, квадратов, объемы прямоугольных параллелепипедов, кубов.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади участков прямоугольной формы, объемы комнат;

  • выполнять простейшие построения на местности, необходимые в реальной жизни;

  • оценивать размеры реальных объектов окружающего мира.

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей.


Выпускник научится в 7-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне)

Элементы теории множеств и математической логики

  • Оперировать на базовом уровне3 понятиями: множество, элемент множества, подмножество, принадлежность;

  • задавать множества перечислением их элементов;

  • находить пересечение, объединение, подмножество в простейших ситуациях;

  • оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство;

  • приводить примеры и контрпримеры для подтверждения своих высказываний.

В повседневной жизни и при изучении других предметов:

  • использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

  • Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень;

  • использовать свойства чисел и правила действий при выполнении вычислений;

  • использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач;

  • выполнять округление рациональных чисел в соответствии с правилами;

  • оценивать значение квадратного корня из положительного целого числа;

  • распознавать рациональные и иррациональные числа;

  • сравнивать числа.

В повседневной жизни и при изучении других предметов:

  • оценивать результаты вычислений при решении практических задач;

  • выполнять сравнение чисел в реальных ситуациях;

  • составлять числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

  • Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые;

  • использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений;

  • выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями.

В повседневной жизни и при изучении других предметов:

  • понимать смысл записи числа в стандартном виде;

  • оперировать на базовом уровне понятием «стандартная запись числа».

Уравнения и неравенства

  • Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства;

  • проверять справедливость числовых равенств и неравенств;

  • решать линейные неравенства и несложные неравенства, сводящиеся к линейным;

  • решать системы несложных линейных уравнений, неравенств;

  • проверять, является ли данное число решением уравнения (неравенства);

  • решать квадратные уравнения по формуле корней квадратного уравнения;

  • изображать решения неравенств и их систем на числовой прямой.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах.

Функции

  • Находить значение функции по заданному значению аргумента;

  • находить значение аргумента по заданному значению функции в несложных ситуациях;

  • определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости;

  • по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции;

  • строить график линейной функции;

  • проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности);

  • определять приближенные значения координат точки пересечения графиков функций;

  • оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

  • решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчетом без применения формул.

В повседневной жизни и при изучении других предметов:

  • использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.);

  • использовать свойства линейной функции и ее график при решении задач из других учебных предметов.

Статистика и теория вероятностей

  • Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах;

  • решать простейшие комбинаторные задачи методом прямого и организованного перебора;

  • представлять данные в виде таблиц, диаграмм, графиков;

  • читать информацию, представленную в виде таблицы, диаграммы, графика;

  • определять основные статистические характеристики числовых наборов;

  • оценивать вероятность события в простейших случаях;

  • иметь представление о роли закона больших чисел в массовых явлениях.

В повседневной жизни и при изучении других предметов:

  • оценивать количество возможных вариантов методом перебора;

  • иметь представление о роли практически достоверных и маловероятных событий;

  • сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

  • оценивать вероятность реальных событий и явлений в несложных ситуациях.

Текстовые задачи

  • Решать несложные сюжетные задачи разных типов на все арифметические действия;

  • строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи;

  • осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

  • составлять план решения задачи;

  • выделять этапы решения задачи;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • знать различие скоростей объекта в стоячей воде, против течения и по течению реки;

  • решать задачи на нахождение части числа и числа по его части;

  • решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними;

  • находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины;

  • решать несложные логические задачи методом рассуждений.

В повседневной жизни и при изучении других предметов:

  • выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку).

Геометрические фигуры

  • Оперировать на базовом уровне понятиями геометрических фигур;

  • извлекать информацию о геометрических фигурах, представленную на чертежах в явном виде;

  • применять для решения задач геометрические факты, если условия их применения заданы в явной форме;

  • решать задачи на нахождение геометрических величин по образцам или алгоритмам.

В повседневной жизни и при изучении других предметов:

  • использовать свойства геометрических фигур для решения типовых задач, возникающих в ситуациях повседневной жизни, задач практического содержания.

Отношения

  • Оперировать на базовом уровне понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для решения простейших задач, возникающих в реальной жизни.

Измерения и вычисления

  • Выполнять измерение длин, расстояний, величин углов, с помощью инструментов для измерений длин и углов;

  • применять формулы периметра, площади и объема, площади поверхности отдельных многогранников при вычислениях, когда все данные имеются в условии;

  • применять теорему Пифагора, базовые тригонометрические соотношения для вычисления длин, расстояний, площадей в простейших случаях.

В повседневной жизни и при изучении других предметов:

  • вычислять расстояния на местности в стандартных ситуациях, площади в простейших случаях, применять формулы в простейших ситуациях в повседневной жизни.

Геометрические построения

  • Изображать типовые плоские фигуры и фигуры в пространстве от руки и с помощью инструментов.

В повседневной жизни и при изучении других предметов:

  • выполнять простейшие построения на местности, необходимые в реальной жизни.

Геометрические преобразования

  • Строить фигуру, симметричную данной фигуре относительно оси и точки.

В повседневной жизни и при изучении других предметов:

  • распознавать движение объектов в окружающем мире;

  • распознавать симметричные фигуры в окружающем мире.

Векторы и координаты на плоскости

  • Оперировать на базовом уровне понятиями вектор, сумма векторов, произведение вектора на число, координаты на плоскости;

  • определять приближенно координаты точки по ее изображению на координатной плоскости.

В повседневной жизни и при изучении других предметов:

  • использовать векторы для решения простейших задач на определение скорости относительного движения.

История математики

  • Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов, в связи с отечественной и всемирной историей;

  • понимать роль математики в развитии России.

Методы математики

  • Выбирать подходящий изученный метод для решения изученных типов математических задач;

  • Приводить примеры математических закономерностей в окружающей действительности и произведениях искусства.





Выпускник получит возможность научиться в 7-9 классах для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях

Элементы теории множеств и математической логики

  • Оперировать4 понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств;

  • изображать множества и отношение множеств с помощью кругов Эйлера;

  • определять принадлежность элемента множеству, объединению и пересечению множеств;

  • задавать множество с помощью перечисления элементов, словесного описания;

  • оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации);

  • строить высказывания, отрицания высказываний.

В повседневной жизни и при изучении других предметов:

  • строить цепочки умозаключений на основе использования правил логики;

  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений.

Числа

  • Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

  • понимать и объяснять смысл позиционной записи натурального числа;

  • выполнять вычисления, в том числе с использованием приемов рациональных вычислений;

  • выполнять округление рациональных чисел с заданной точностью;

  • сравнивать рациональные и иррациональные числа;

  • представлять рациональное число в виде десятичной дроби

  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби;

  • находить НОД и НОК чисел и использовать их при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов;

  • выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений;

  • составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов;

  • записывать и округлять числовые значения реальных величин с использованием разных систем измерения.

Тождественные преобразования

  • Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем;

  • выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение);

  • выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения;

  • выделять квадрат суммы и разности одночленов;

  • раскладывать на множители квадратный трехчлен;

  • выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби;

  • выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень;

  • выполнять преобразования выражений, содержащих квадратные корни;

  • выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни;

  • выполнять преобразования выражений, содержащих модуль.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с числами, записанными в стандартном виде;

  • выполнять преобразования алгебраических выражений при решении задач других учебных предметов.

Уравнения и неравенства

  • Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств);

  • решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований;

  • решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований;

  • решать дробно-линейные уравнения;

  • решать простейшие иррациональные уравнения вида , ;

  • решать уравнения вида ;

  • решать уравнения способом разложения на множители и замены переменной;

  • использовать метод интервалов для решения целых и дробно-рациональных неравенств;

  • решать линейные уравнения и неравенства с параметрами;

  • решать несложные квадратные уравнения с параметром;

  • решать несложные системы линейных уравнений с параметрами;

  • решать несложные уравнения в целых числах.

В повседневной жизни и при изучении других предметов:

  • составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов;

  • выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов;

  • выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи;

  • уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи.

Функции

  • Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, четность/нечетность функции;

  • строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: , ,, ;

  • на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций ;

  • составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой;

  • исследовать функцию по ее графику;

  • находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции;

  • оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

  • решать задачи на арифметическую и геометрическую прогрессию.

В повседневной жизни и при изучении других предметов:

  • иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам;

  • использовать свойства и график квадратичной функции при решении задач из других учебных предметов.

Текстовые задачи

  • Решать простые и сложные задачи разных типов, а также задачи повышенной трудности;

  • использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач;

  • различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи;

  • знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

  • анализировать затруднения при решении задач;

  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;

  • решать разнообразные задачи «на части»,

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

  • владеть основными методами решения задач на смеси, сплавы, концентрации;

  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

  • решать несложные задачи по математической статистике;

  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества;

  • решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета.

Статистика и теория вероятностей

  • Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

  • извлекать информацию, представленную в таблицах, на диаграммах, графиках;

  • составлять таблицы, строить диаграммы и графики на основе данных;

  • оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля;

  • применять правило произведения при решении комбинаторных задач;

  • оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями;

  • представлять информацию с помощью кругов Эйлера;

  • решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики.

В повседневной жизни и при изучении других предметов:

  • извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений;

  • определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи;

  • оценивать вероятность реальных событий и явлений.

Геометрические фигуры

  • Оперировать понятиями геометрических фигур;

  • извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

  • применять геометрические факты для решения задач, в том числе, предполагающих несколько шагов решения;

  • формулировать в простейших случаях свойства и признаки фигур;

  • доказывать геометрические утверждения;

  • владеть стандартной классификацией плоских фигур (треугольников и четырехугольников).

В повседневной жизни и при изучении других предметов:

  • использовать свойства геометрических фигур для решения задач практического характера и задач из смежных дисциплин.

Отношения

  • Оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

  • применять теорему Фалеса и теорему о пропорциональных отрезках при решении задач;

  • характеризовать взаимное расположение прямой и окружности, двух окружностей.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для решения задач, возникающих в реальной жизни.

Измерения и вычисления

  • Оперировать представлениями о длине, площади, объеме как величинами. Применять теорему Пифагора, формулы площади, объема при решении многошаговых задач, в которых не все данные представлены явно, а требуют вычислений, оперировать более широким количеством формул длины, площади, объема, вычислять характеристики комбинаций фигур (окружностей и многоугольников) вычислять расстояния между фигурами, применять тригонометрические формулы для вычислений в более сложных случаях, проводить вычисления на основе равновеликости и равносоставленности;

  • проводить простые вычисления на объемных телах;

  • формулировать задачи на вычисление длин, площадей и объемов и решать их.

В повседневной жизни и при изучении других предметов:

  • проводить вычисления на местности;

  • применять формулы при вычислениях в смежных учебных предметах, в окружающей действительности.

Геометрические построения

  • Изображать геометрические фигуры по текстовому и символьному описанию;

  • свободно оперировать чертежными инструментами в несложных случаях,

  • выполнять построения треугольников, применять отдельные методы построений циркулем и линейкой и проводить простейшие исследования числа решений;

  • изображать типовые плоские фигуры и объемные тела с помощью простейших компьютерных инструментов.

В повседневной жизни и при изучении других предметов:

  • выполнять простейшие построения на местности, необходимые в реальной жизни;

  • оценивать размеры реальных объектов окружающего мира.

Преобразования

  • Оперировать понятием движения и преобразования подобия, владеть приемами построения фигур с использованием движений и преобразований подобия, применять полученные знания и опыт построений в смежных предметах и в реальных ситуациях окружающего мира;

  • строить фигуру, подобную данной, пользоваться свойствами подобия для обоснования свойств фигур;

  • применять свойства движений для проведения простейших обоснований свойств фигур.

В повседневной жизни и при изучении других предметов:

  • применять свойства движений и применять подобие для построений и вычислений.

Векторы и координаты на плоскости

  • Оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, угол между векторами, скалярное произведение векторов, координаты на плоскости, координаты вектора;

  • выполнять действия над векторами (сложение, вычитание, умножение на число), вычислять скалярное произведение, определять в простейших случаях угол между векторами, выполнять разложение вектора на составляющие, применять полученные знания в физике, пользоваться формулой вычисления расстояния между точками по известным координатам, использовать уравнения фигур для решения задач;

  • применять векторы и координаты для решения геометрических задач на вычисление длин, углов.

В повседневной жизни и при изучении других предметов:

  • использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам.

История математики

  • Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей;

  • понимать роль математики в развитии России.

Методы математики

  • Используя изученные методы, проводить доказательство, выполнять опровержение;

  • выбирать изученные методы и их комбинации для решения математических задач;

  • использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства;

  • применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач.

Выпускник получит возможность научиться в 7-9 классах для успешного продолжения образования на углубленном уровне

Элементы теории множеств и математической логики

  • Свободно оперировать5 понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества;

  • задавать множества разными способами;

  • проверять выполнение характеристического свойства множества;

  • свободно оперировать понятиями: высказывание, истинность и ложность высказывания, сложные и простые высказывания, отрицание высказываний; истинность и ложность утверждения и его отрицания, операции над высказываниями: и, или, не; условные высказывания (импликации);

  • строить высказывания с использованием законов алгебры высказываний.

В повседневной жизни и при изучении других предметов:

  • строить рассуждения на основе использования правил логики;

  • использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов.

Числа

  • Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел;

  • понимать и объяснять разницу между позиционной и непозиционной системами записи чисел;

  • переводить числа из одной системы записи (системы счисления) в другую;

  • доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11 суммы и произведения чисел при выполнении вычислений и решении задач;

  • выполнять округление рациональных и иррациональных чисел с заданной точностью;

  • сравнивать действительные числа разными способами;

  • упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2;

  • находить НОД и НОК чисел разными способами и использовать их при решении задач;

  • выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней.

В повседневной жизни и при изучении других предметов:

  • выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений;

  • записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения;

  • составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов.

Тождественные преобразования

  • Свободно оперировать понятиями степени с целым и дробным показателем;

  • выполнять доказательство свойств степени с целыми и дробными показателями;

  • оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена;

  • свободно владеть приемами преобразования целых и дробно-рациональных выражений;

  • выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приемов;

  • использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трехчлена и для решения задач, в том числе задач с параметрами на основе квадратного трехчлена;

  • выполнять деление многочлена на многочлен с остатком;

  • доказывать свойства квадратных корней и корней степени n;

  • выполнять преобразования выражений, содержащих квадратные корни, корни степени n;

  • свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»;

  • выполнять различные преобразования выражений, содержащих модули.

В повседневной жизни и при изучении других предметов:

  • выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде;

  • выполнять преобразования рациональных выражений при решении задач других учебных предметов;

  • выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей.

Уравнения и неравенства

  • Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений;

  • решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные;

  • знать теорему Виета для уравнений степени выше второй;

  • понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать;

  • владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор;

  • использовать метод интервалов для решения неравенств, в том числе дробно-рациональных и включающих в себя иррациональные выражения;

  • решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами;

  • владеть разными методами доказательства неравенств;

  • решать уравнения в целых числах;

  • изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами.

В повседневной жизни и при изучении других предметов:

  • составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов;

  • выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов;

  • составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов;

  • составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты.

Функции

  • Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, четность/нечетность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией,

  • строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, ;

  • использовать преобразования графика функции для построения графиков функций ;

  • анализировать свойства функций и вид графика в зависимости от параметров;

  • свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии;

  • использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость;

  • исследовать последовательности, заданные рекуррентно;

  • решать комбинированные задачи на арифметическую и геометрическую прогрессии.

В повседневной жизни и при изучении других предметов:

  • конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления;

  • использовать графики зависимостей для исследования реальных процессов и явлений;

  • конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета.

Статистика и теория вероятностей

  • Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость;

  • выбирать наиболее удобный способ представления информации, адекватный ее свойствам и целям анализа;

  • вычислять числовые характеристики выборки;

  • свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля;

  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

  • свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы;

  • знать примеры случайных величин, и вычислять их статистические характеристики;

  • использовать формулы комбинаторики при решении комбинаторных задач;

  • решать задачи на вычисление вероятности в том числе с использованием формул.

В повседневной жизни и при изучении других предметов:

  • представлять информацию о реальных процессах и явлениях способом, адекватным ее свойствам и цели исследования;

  • анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов;

  • оценивать вероятность реальных событий и явлений в различных ситуациях.

Текстовые задачи

  • Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу;

  • распознавать разные виды и типы задач;

  • использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи;

  • различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи;

  • знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный);

  • моделировать рассуждения при поиске решения задач с помощью граф-схемы;

  • выделять этапы решения задачи и содержание каждого этапа;

  • уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно;

  • анализировать затруднения при решении задач;

  • выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные;

  • интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи;

  • изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное;

  • анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке;

  • исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета;

  • решать разнообразные задачи «на части»;

  • решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби;

  • объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов;

  • владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения;

  • решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы;

  • решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц;

  • решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение;

  • решать несложные задачи по математической статистике;

  • овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях.

В повседневной жизни и при изучении других предметов:

  • конструировать новые для данной задачи задачные ситуации с учетом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат;

  • решать задачи на движение по реке, рассматривая разные системы отсчета;

  • конструировать задачные ситуации, приближенные к реальной действительности.

Геометрические фигуры

  • Свободно оперировать геометрическими понятиями при решении задач и проведении математических рассуждений;

  • самостоятельно формулировать определения геометрических фигур, выдвигать гипотезы о новых свойствах и признаках геометрических фигур и обосновывать или опровергать их, обобщать или конкретизировать результаты на новые классы фигур, проводить в несложных случаях классификацию фигур по различным основаниям;

  • исследовать чертежи, включая комбинации фигур, извлекать, интерпретировать и преобразовывать информацию, представленную на чертежах;

  • решать задачи геометрического содержания, в том числе в ситуациях, когда алгоритм решения не следует явно из условия, выполнять необходимые для решения задачи дополнительные построения, исследовать возможность применения теорем и формул для решения задач;

  • формулировать и доказывать геометрические утверждения.

В повседневной жизни и при изучении других предметов:

  • составлять с использованием свойств геометрических фигур математические модели для решения задач практического характера и задач из смежных дисциплин, исследовать полученные модели и интерпретировать результат.

Отношения

  • Владеть понятием отношения как метапредметным;

  • свободно оперировать понятиями: равенство фигур, равные фигуры, равенство треугольников, параллельность прямых, перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция, подобие фигур, подобные фигуры, подобные треугольники;

  • использовать свойства подобия и равенства фигур при решении задач.

В повседневной жизни и при изучении других предметов:

  • использовать отношения для построения и исследования математических моделей объектов реальной жизни.

Измерения и вычисления

  • Свободно оперировать понятиями длина, площадь, объем, величина угла как величинами, использовать равновеликость и равносоставленность при решении задач на вычисление, самостоятельно получать и использовать формулы для вычислений площадей и объемов фигур, свободно оперировать широким набором формул на вычисление при решении сложных задач, в том числе и задач на вычисление в комбинациях окружности и треугольника, окружности и четырехугольника, а также с применением тригонометрии;

  • самостоятельно формулировать гипотезы и проверять их достоверность.

В повседневной жизни и при изучении других предметов:

  • свободно оперировать формулами при решении задач в других учебных предметах и при проведении необходимых вычислений в реальной жизни.

Геометрические построения

  • Оперировать понятием набора элементов, определяющих геометрическую фигуру,

  • владеть набором методов построений циркулем и линейкой;

  • проводить анализ и реализовывать этапы решения задач на построение.

В повседневной жизни и при изучении других предметов:

  • выполнять построения на местности;

  • оценивать размеры реальных объектов окружающего мира.

Преобразования

  • Оперировать движениями и преобразованиями как метапредметными понятиями;

  • оперировать понятием движения и преобразования подобия для обоснований, свободно владеть приемами построения фигур с помощью движений и преобразования подобия, а также комбинациями движений, движений и преобразований;

  • использовать свойства движений и преобразований для проведения обоснования и доказательства утверждений в геометрии и других учебных предметах;

  • пользоваться свойствами движений и преобразований при решении задач.

В повседневной жизни и при изучении других предметов:

  • применять свойства движений и применять подобие для построений и вычислений.

Векторы и координаты на плоскости

  • Свободно оперировать понятиями вектор, сумма, разность векторов, произведение вектора на число, скалярное произведение векторов, координаты на плоскости, координаты вектора;

  • владеть векторным и координатным методом на плоскости для решения задач на вычисление и доказательства;

  • выполнять с помощью векторов и координат доказательство известных ему геометрических фактов (свойства средних линий, теорем о замечательных точках и т.п.) и получать новые свойства известных фигур;

  • использовать уравнения фигур для решения задач и самостоятельно составлять уравнения отдельных плоских фигур.

В повседневной жизни и при изучении других предметов:

  • использовать понятия векторов и координат для решения задач по физике, географии и другим учебным предметам.

История математики

  • Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях;

  • рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России.

Методы математики

  • Владеть знаниями о различных методах обоснования и опровержения математических утверждений и самостоятельно применять их;

  • владеть навыками анализа условия задачи и определения подходящих для решения задач изученных методов или их комбинаций;

  • характеризовать произведения искусства с учетом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве.


Требования к результатам обучения и освоению содержания курса

Изучение математики в основной школе дает возможность обучающимся достичь следующих результатов в направлении личностного развития:


  • умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;

  • критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;

  • представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;

  • креативность мышления, инициатива, находчивость, активность при решении математических задач;

  • умение контролировать процесс и результат учебной математической деятельности;

  • способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений.

В метапредметном направлении:

  • первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;

  • умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;

  • умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;

  • умение понимать и использовать математические средства наглядности (графики, диаграммы, таблицы, схемы и др.) для иллюстрации, интерпретации, аргументации;

  • умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;

  • умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;

  • понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;

  • умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;

  • умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера.

В предметном направлении:

  • умение работать с математическим текстом (структурирование, извлечение необходимой информации), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики;

  • владение базовым понятийным аппаратом по основным разделам содержания; представление об основных изучаемых понятиях (число, геометрическая фигура, уравнение, функция, вероятность) как важнейших математических моделях, позволяющих описывать и изучать реальные процессы и явления;

  • Овладение практически значимыми умениями и навыками, их применение к решению математических и нематематических задач, предполагающее умения:

    • выполнять устные, письменные и инструментальные вычисления; проводить несложные математические расчеты с использованием при необходимости справочных материалов, калькулятора, компьютера;

    • выполнять алгебраические преобразования рациональных выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;

    • пользоваться математическими формулами и самостоятельно составлять формулы зависимостей между величинами на основе обобщенных частных случаев и эксперимента;

    • решать линейные и квадратные уравнения и неравенства, а также приводимые к ним уравнения, неравенства, системы; применять графические представления для решения и исследования уравнений, неравенств, систем; применять полученные умения для решения задач из математики, смежных предметов, практики;

    • строить графики функций, описывать их свойства, использовать функционально-графические представления для описания и анализа учебных математических задач и реальных зависимостей;

    • использовать геометрический язык для описания предметов окружающего мира; выполнять чертежи, делать рисунки, схемы по условию задачи;

    • измерять длины отрезков, величины углов, использовать формулы для нахождения периметров, площадей и объемов геометрических фигур;

    • применять знания о геометрических фигурах и их свойствах для решения геометрических и практических задач;

    • использовать основные способы представления и анализа статистических данных; решать задачи на нахождение частоты и вероятности случайных событий;

    • применять изученные понятия, результаты и методы при решении задач из различных разделов курса, в том числе задач, не сводящихся к непосредственному применению известных алгоритмов;

    • точно и грамотно выражать свои мысли в устной и письменной речи, применяя математическую терминологию и символику; использовать различные языки математики; обосновывать суждения, проводить классификацию, доказывать математические утверждения.


III. Содержание учебного курса.


Основное содержание на уровне ООО

Математика

Cодержание курсов математики 5–6 классов, алгебры и геометрии 7–9 классов объединено как в исторически сложившиеся линии (числовая, алгебраическая, геометрическая, функциональная и др.), так и в относительно новые (стохастическая линия, «реальная математика»). Отдельно представлены линия сюжетных задач, историческая линия.

Элементы теории множеств и математической логики

Согласно ФГОС основного общего образования в курс математики введен раздел «Логика», который не предполагает дополнительных часов на изучении и встраивается в различные темы курсов математики и информатики и предваряется ознакомлением с элементами теории множеств.

Множества и отношения между ними

Множество, характеристическое свойство множества, элемент множества, пустое, конечное, бесконечное множество. Подмножество. Отношение принадлежности, включения, равенства. Элементы множества, способы задания множеств, распознавание подмножеств и элементов подмножеств с использованием кругов Эйлера.

Операции над множествами

Пересечение и объединение множеств. Разность множеств, дополнение множества. Интерпретация операций над множествами с помощью кругов Эйлера.

Элементы логики

Определение. Утверждения. Аксиомы и теоремы. Доказательство. Доказательство от противного. Теорема, обратная данной. Пример и контрпример.

Высказывания

Истинность и ложность высказывания. Сложные и простые высказывания. Операции над высказываниями с использованием логических связок: и, или, не. Условные высказывания (импликации).

Содержание курса математики в 5–6 классах

Натуральные числа и нуль

Натуральный ряд чисел и его свойства

Натуральное число, множество натуральных чисел и его свойства, изображение натуральных чисел точками на числовой прямой. Использование свойств натуральных чисел при решении задач.

Запись и чтение натуральных чисел

Различие между цифрой и числом. Позиционная запись натурального числа, поместное значение цифры, разряды и классы, соотношение между двумя соседними разрядными единицами, чтение и запись натуральных чисел.

Округление натуральных чисел

Необходимость округления. Правило округления натуральных чисел.

Сравнение натуральных чисел, сравнение с числом 0

Понятие о сравнении чисел, сравнение натуральных чисел друг с другом и с нулем, математическая запись сравнений, способы сравнения чисел.

Действия с натуральными числами

Сложение и вычитание, компоненты сложения и вычитания, связь между ними, нахождение суммы и разности, изменение суммы и разности при изменении компонентов сложения и вычитания.

Умножение и деление, компоненты умножения и деления, связь между ними, умножение и сложение в столбик, деление уголком, проверка результата с помощью прикидки и обратного действия.

Переместительный и сочетательный законы сложения и умножения, распределительный закон умножения относительно сложения, обоснование алгоритмов выполнения арифметических действий.

Степень с натуральным показателем

Запись числа в виде суммы разрядных слагаемых, порядок выполнения действий в выражениях, содержащих степень, вычисление значений выражений, содержащих степень.

Числовые выражения

Числовое выражение и его значение, порядок выполнения действий.

Деление с остатком

Деление с остатком на множестве натуральных чисел, свойства деления с остатком. Практические задачи на деление с остатком.

Свойства и признаки делимости

Свойство делимости суммы (разности) на число. Признаки делимости на 2, 3, 5, 9, 10. Признаки делимости на 4, 6, 8, 11. Доказательство признаков делимости. Решение практических задач с применением признаков делимости.

Разложение числа на простые множители

Простые и составные числа, решето Эратосфена.

Разложение натурального числа на множители, разложение на простые множители. Количество делителей числа, алгоритм разложения числа на простые множители, основная теорема арифметики.

Алгебраические выражения

Использование букв для обозначения чисел, вычисление значения алгебраического выражения, применение алгебраических выражений для записи свойств арифметических действий, преобразование алгебраических выражений.

Делители и кратные

Делитель и его свойства, общий делитель двух и более чисел, наибольший общий делитель, взаимно простые числа, нахождение наибольшего общего делителя. Кратное и его свойства, общее кратное двух и более чисел, наименьшее общее кратное, способы нахождения наименьшего общего кратного.

Дроби

Обыкновенные дроби

Доля, часть, дробное число, дробь. Дробное число как результат деления. Правильные и неправильные дроби, смешанная дробь (смешанное число).

Запись натурального числа в виде дроби с заданным знаменателем, преобразование смешанной дроби в неправильную дробь и наоборот.

Приведение дробей к общему знаменателю. Сравнение обыкновенных дробей.

Сложение и вычитание обыкновенных дробей. Умножение и деление обыкновенных дробей.

Арифметические действия со смешанными дробями.

Арифметические действия с дробными числами.

Способы рационализации вычислений и их применение при выполнении действий.

Десятичные дроби

Целая и дробная части десятичной дроби. Преобразование десятичных дробей в обыкновенные. Сравнение десятичных дробей. Сложение и вычитание десятичных дробей. Округление десятичных дробей. Умножение и деление десятичных дробей. Преобразование обыкновенных дробей в десятичные дроби. Конечные и бесконечные десятичные дроби.

Отношение двух чисел

Масштаб на плане и карте. Пропорции. Свойства пропорций, применение пропорций и отношений при решении задач.

Среднее арифметическое чисел

Среднее арифметическое двух чисел. Изображение среднего арифметического двух чисел на числовой прямой. Решение практических задач с применением среднего арифметического. Среднее арифметическое нескольких чисел.

Проценты

Понятие процента. Вычисление процентов от числа и числа по известному проценту, выражение отношения в процентах. Решение несложных практических задач с процентами.

Диаграммы

Столбчатые и круговые диаграммы. Извлечение информации из диаграмм. Изображение диаграмм по числовым данным.

Рациональные числа

Положительные и отрицательные числа

Изображение чисел на числовой (координатной) прямой. Сравнение чисел. Модуль числа, геометрическая интерпретация модуля числа. Действия с положительными и отрицательными числами. Множество целых чисел.

Понятие о рациональном числе. Первичное представление о множестве рациональных чисел. Действия с рациональными числами.

Решение текстовых задач

Единицы измерений: длины, площади, объема, массы, времени, скорости. Зависимости между единицами измерения каждой величины. Зависимости между величинами: скорость, время, расстояние; производительность, время, работа; цена, количество, стоимость.

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Решение несложных задач на движение в противоположных направлениях, в одном направлении, движение по реке по течению и против течения. Решение задач на совместную работу. Применение дробей при решении задач.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение несложных логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, перебор вариантов.

Наглядная геометрия

Фигуры в окружающем мире. Наглядные представления о фигурах на плоскости: прямая, отрезок, луч, угол, ломаная, многоугольник, окружность, круг. Четырехугольник, прямоугольник, квадрат. Треугольник, виды треугольников. Правильные многоугольники. Изображение основных геометрических фигур. Взаимное расположение двух прямых, двух окружностей, прямой и окружности. Длина отрезка, ломаной. Единицы измерения длины. Построение отрезка заданной длины. Виды углов. Градусная мера угла. Измерение и построение углов с помощью транспортира.

Периметр многоугольника. Понятие площади фигуры; единицы измерения площади. Площадь прямоугольника, квадрата. Приближенное измерение площади фигур на клетчатой бумаге. Равновеликие фигуры.

Наглядные представления о пространственных фигурах: куб, параллелепипед, призма, пирамида, шар, сфера, конус, цилиндр. Изображение пространственных фигур. Примеры сечений. Многогранники. Правильные многогранники. Примеры разверток многогранников, цилиндра и конуса.

Понятие объема; единицы объема. Объем прямоугольного параллелепипеда, куба.

Понятие о равенстве фигур. Центральная, осевая и зеркальная симметрии. Изображение симметричных фигур.

Решение практических задач с применением простейших свойств фигур.

История математики

Появление цифр, букв, иероглифов в процессе счета и распределения продуктов на Древнем Ближнем Востоке. Связь с Неолитической революцией.

Рождение шестидесятеричной системы счисления. Появление десятичной записи чисел.

Рождение и развитие арифметики натуральных чисел. НОК, НОД, простые числа. Решето Эратосфена.

Появление нуля и отрицательных чисел в математике древности. Роль Диофанта. Почему ?

Дроби в Вавилоне, Египте, Риме. Открытие десятичных дробей. Старинные системы мер. Десятичные дроби и метрическая система мер. Л. Магницкий.

Содержание курса математики в 7–9 классах

Алгебра

Числа

Рациональные числа

Множество рациональных чисел. Сравнение рациональных чисел. Действия с рациональными числами. Представление рационального числа десятичной дробью.

Иррациональные числа

Понятие иррационального числа. Распознавание иррациональных чисел. Примеры доказательств в алгебре. Иррациональность числа . Применение в геометрии. Сравнение иррациональных чисел. Множество действительных чисел.

Тождественные преобразования

Числовые и буквенные выражения

Выражение с переменной. Значение выражения. Подстановка выражений вместо переменных.

Целые выражения

Степень с натуральным показателем и ее свойства. Преобразования выражений, содержащих степени с натуральным показателем.

Одночлен, многочлен. Действия с одночленами и многочленами (сложение, вычитание, умножение). Формулы сокращенного умножения: разность квадратов, квадрат суммы и разности. Разложение многочлена на множители: вынесение общего множителя за скобки, группировка, применение формул сокращенного умножения. Квадратный трехчлен, разложение квадратного трехчлена на множители.

Дробно-рациональные выражения

Степень с целым показателем. Преобразование дробно-линейных выражений: сложение, умножение, деление. Алгебраическая дробь. Допустимые значения переменных в дробно-рациональных выражениях. Сокращение алгебраических дробей. Приведение алгебраических дробей к общему знаменателю. Действия с алгебраическими дробями: сложение, вычитание, умножение, деление, возведение в степень.

Преобразование выражений, содержащих знак модуля.



Квадратные корни

Арифметический квадратный корень. Преобразование выражений, содержащих квадратные корни: умножение, деление, вынесение множителя из-под знака корня, внесение множителя под знак корня.

Уравнения и неравенства

Равенства

Числовое равенство. Свойства числовых равенств. Равенство с переменной.

Уравнения

Понятие уравнения и корня уравнения. Представление о равносильности уравнений. Область определения уравнения (область допустимых значений переменной).

Линейное уравнение и его корни

Решение линейных уравнений. Линейное уравнение с параметром. Количество корней линейного уравнения. Решение линейных уравнений с параметром.

Квадратное уравнение и его корни

Квадратные уравнения. Неполные квадратные уравнения. Дискриминант квадратного уравнения. Формула корней квадратного уравнения. Теорема Виета. Теорема, обратная теореме Виета. Решение квадратных уравнений:использование формулы для нахождения корней, графический метод решения, разложение на множители, подбор корней с использованием теоремы Виета. Количество корней квадратного уравнения в зависимости от его дискриминанта. Биквадратные уравнения. Уравнения, сводимые к линейным и квадратным. Квадратные уравнения с параметром.

Дробно-рациональные уравнения

Решение простейших дробно-линейных уравнений. Решение дробно-рациональных уравнений.

Методы решения уравнений: методы равносильных преобразований, метод замены переменной, графический метод. Использование свойств функций при решении уравнений.

Простейшие иррациональные уравнения вида , .

Уравнения вида .Уравнения в целых числах.

Системы уравнений

Уравнение с двумя переменными. Линейное уравнение с двумя переменными. Прямая как графическая интерпретация линейного уравнения с двумя переменными.

Понятие системы уравнений. Решение системы уравнений.

Методы решения систем линейных уравнений с двумя переменными: графический метод, метод сложения, метод подстановки.

Системы линейных уравнений с параметром.

Неравенства

Числовые неравенства. Свойства числовых неравенств. Проверка справедливости неравенств при заданных значениях переменных.

Неравенство с переменной. Строгие и нестрогие неравенства. Область определения неравенства (область допустимых значений переменной).

Решение линейных неравенств.

Квадратное неравенство и его решения. Решение квадратных неравенств: использование свойств и графика квадратичной функции, метод интервалов. Запись решения квадратного неравенства.

Решение целых и дробно-рациональных неравенств методом интервалов.

Системы неравенств

Системы неравенств с одной переменной. Решение систем неравенств с одной переменной: линейных, квадратных. Изображение решения системы неравенств на числовой прямой. Запись решения системы неравенств.


Функции

Понятие функции

Декартовы координаты на плоскости. Формирование представлений о метапредметном понятии «координаты». Способы задания функций: аналитический, графический, табличный. График функции. Примеры функций, получаемых в процессе исследования различных реальных процессов и решения задач. Значение функции в точке. Свойства функций: область определения, множество значений, нули, промежутки знакопостоянства, четность/нечетность, промежутки возрастания и убывания, наибольшее и наименьшее значения. Исследование функции по ее графику.

Представление об асимптотах.

Непрерывность функции. Кусочно заданные функции.

Линейная функция

Свойства и график линейной функции. Угловой коэффициент прямой. Расположение графика линейной функции в зависимости от ее углового коэффициента и свободного члена. Нахождение коэффициентов линейной функции по заданным условиям: прохождение прямой через две точки с заданными координатами, прохождение прямой через данную точку и параллельной данной прямой.

Квадратичная функция

Свойства и график квадратичной функции (парабола). Построение графика квадратичной функции по точкам. Нахождение нулей квадратичной функции, множества значений, промежутков знакопостоянства, промежутков монотонности.

Обратная пропорциональность

Свойства функции . Гипербола.

Графики функций. Преобразование графика функции для построения графиков функций вида .

Графики функций , ,, .

Последовательности и прогрессии

Числовая последовательность. Примеры числовых последовательностей. Бесконечные последовательности. Арифметическая прогрессия и ее свойства. Геометрическая прогрессия. Формула общего члена и суммы n первых членов арифметической и геометрической прогрессий. Сходящаяся геометрическая прогрессия.

Решение текстовых задач

Задачи на все арифметические действия

Решение текстовых задач арифметическим способом. Использование таблиц, схем, чертежей, других средств представления данных при решении задачи.

Задачи на движение, работу и покупки

Анализ возможных ситуаций взаимного расположения объектов при их движении, соотношения объемов выполняемых работ при совместной работе.

Задачи на части, доли, проценты

Решение задач на нахождение части числа и числа по его части. Решение задач на проценты и доли. Применение пропорций при решении задач.

Логические задачи

Решение логических задач. Решение логических задач с помощью графов, таблиц.

Основные методы решения текстовых задач: арифметический, алгебраический, перебор вариантов. Первичные представления о других методах решения задач (геометрические и графические методы).

Статистика и теория вероятностей

Статистика

Табличное и графическое представление данных, столбчатые и круговые диаграммы, графики, применение диаграмм и графиков для описания зависимостей реальных величин, извлечение информации из таблиц, диаграмм и графиков. Описательные статистические показатели числовых наборов: среднее арифметическое, медиана, наибольшее и наименьшее значения. Меры рассеивания: размах, дисперсия и стандартное отклонение.

Случайная изменчивость. Изменчивость при измерениях. Решающие правила. Закономерности в изменчивых величинах.

Случайные события

Случайные опыты (эксперименты), элементарные случайные события (исходы). Вероятности элементарных событий. События в случайных экспериментах и благоприятствующие элементарные события. Вероятности случайных событий. Опыты с равновозможными элементарными событиями. Классические вероятностные опыты с использованием монет, кубиков. Представление событий с помощью диаграмм Эйлера. Противоположные события, объединение и пересечение событий. Правило сложения вероятностей. Случайный выбор. Представление эксперимента в виде дерева. Независимые события. Умножение вероятностей независимых событий. Последовательные независимые испытания. Представление о независимых событиях в жизни.

Элементы комбинаторики

Правило умножения, перестановки, факториал числа. Сочетания и число сочетаний. Формула числа сочетаний. Треугольник Паскаля. Опыты с большим числом равновозможных элементарных событий. Вычисление вероятностей в опытах с применением комбинаторных формул. Испытания Бернулли. Успех и неудача. Вероятности событий в серии испытаний Бернулли.

Случайные величины

Знакомство со случайными величинами на примерах конечных дискретных случайных величин. Распределение вероятностей. Математическое ожидание. Свойства математического ожидания. Понятие о законе больших чисел. Измерение вероятностей. Применение закона больших чисел в социологии, страховании, в здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях.

Геометрия

Геометрические фигуры

Фигуры в геометрии и в окружающем мире

Геометрическая фигура. Формирование представлений о метапредметном понятии «фигура».

Точка, линия, отрезок, прямая, луч, ломаная, плоскость, угол, биссектриса угла и ее свойства, виды углов, многоугольники, круг.

Осевая симметрия геометрических фигур. Центральная симметрия геометрических фигур.

Многоугольники

Многоугольник, его элементы и его свойства. Распознавание некоторых многоугольников. Выпуклые и невыпуклые многоугольники. Правильные многоугольники.

Треугольники. Высота, медиана, биссектриса, средняя линия треугольника. Равнобедренный треугольник, его свойства и признаки. Равносторонний треугольник. Прямоугольный, остроугольный, тупоугольный треугольники. Внешние углы треугольника. Неравенство треугольника.

Четырехугольники. Параллелограмм, ромб, прямоугольник, квадрат, трапеция, равнобедренная трапеция. Свойства и признаки параллелограмма, ромба, прямоугольника, квадрата.


Окружность, круг

Окружность, круг, их элементы и свойства; центральные и вписанные углы. Касательная и секущая к окружности, их свойства. Вписанные и описанные окружности для треугольников, четырехугольников, правильных многоугольников.

Геометрические фигуры в пространстве (объемные тела)

Многогранник и его элементы. Названия многогранников с разным положением и количеством граней. Первичные представления о пирамиде, параллелепипеде, призме, сфере, шаре, цилиндре, конусе, их элементах и простейших свойствах.

Отношения

Равенство фигур

Свойства равных треугольников. Признаки равенства треугольников.

Параллельно­сть прямых

Признаки и свойства параллельных прямых. Аксиома параллельности Евклида. Теорема Фалеса.

Перпендикулярные прямые

Прямой угол. Перпендикуляр к прямой. Наклонная, проекция. Серединный перпендикуляр к отрезку. Свойства и признаки перпендикулярности.

Подобие

Пропорциональные отрезки, подобие фигур. Подобные треугольники. Признаки подобия.

Взаимное расположение прямой и окружности, двух окружностей.

Измерения и вычисления

Величины

Понятие величины. Длина. Измерение длины. Единицы измерения длины. Величина угла. Градусная мера угла.

Понятие о площади плоской фигуры и ее свойствах. Измерение площадей. Единицы измерения площади.

Представление об объеме и его свойствах. Измерение объема. Единицы измерения объемов.

Измерения и вычисления

Инструменты для измерений и построений; измерение и вычисление углов, длин (расстояний), площадей. Тригонометрические функции острого угла в прямоугольном треугольнике Тригонометрические функции тупого угла. Вычисление элементов треугольников с использованием тригонометрических соотношений. Формулы площади треугольника, параллелограмма и его частных видов, формулы длины ок­ружности и площади круга. Сравнение и вычисление площадей. Теорема Пифагора. Теорема синусов. Теорема косинусов.

Расстояния

Расстояние между точками. Расстояние от точки до прямой. Расстояние между фигурами.

Геометрические построения

Геометрические построения для иллюстрации свойств геометрических фигур.

Инструменты для построений: циркуль, линейка, угольник. Простейшие построения циркулем и линейкой: построение биссектрисы угла, перпендикуляра к прямой, угла, равного данному,

Построение треугольников по трем сторонам, двум сторонам и углу между ними, стороне и двум прилежащим к ней углам.

Деление отрезка в данном отношении.

Геометрические преобразования

Преобразования

Понятие преобразования. Представление о метапредметном понятии «преобразование». Подобие.

Движения

Осевая и центральная симметрия, поворот и параллельный перенос. Комбинации движений на плоскости и их свойства.

Векторы и координаты на плоскости

Векторы

Понятие вектора, действия над векторами, использование векторов в физике, разложение вектора на составляющие, скалярное произведение.

Координаты

Основные понятия, координаты вектора, расстояние между точками. Координаты середины отрезка. Уравнения фигур.

Применение векторов и координат для решения простейших геометрических задач.

История математики

Возникновение математики как науки, этапы ее развития. Основные разделы математики. Выдающиеся математики и их вклад в развитие науки.

Бесконечность множества простых чисел. Числа и длины отрезков. Рациональные числа. Потребность в иррациональных числах. Школа Пифагора

Зарождение алгебры в недрах арифметики. Ал-Хорезми. Рождение буквенной символики. П. Ферма, Ф. Виет, Р. Декарт. История вопроса о нахождении формул корней алгебраических уравнений степеней, больших четырех. Н. Тарталья, Дж. Кардано, Н.Х. Абель, Э. Галуа.

Появление метода координат, позволяющего переводить геометрические объекты на язык алгебры. Появление графиков функций. Р. Декарт, П. Ферма. Примеры различных систем координат.

Задача Леонардо Пизанского (Фибоначчи) о кроликах, числа Фибоначчи. Задача о шахматной доске. Сходимость геометрической прогрессии.

Истоки теории вероятностей: страховое дело, азартные игры. П. Ферма, Б.Паскаль, Я. Бернулли, А.Н.Колмогоров.

От земледелия к геометрии. Пифагор и его школа. Фалес, Архимед. Платон и Аристотель. Построение правильных многоугольников. Триссекция угла. Квадратура круга. Удвоение куба. История числа π. Золотое сечение. «Начала» Евклида. Л Эйлер, Н.И.Лобачевский. История пятого постулата.

Геометрия и искусство. Геометрические закономерности окружающего мира.

Астрономия и геометрия. Что и как узнали Анаксагор, Эратосфен и Аристарх о размерах Луны, Земли и Солнца. Расстояния от Земли до Луны и Солнца. Измерение расстояния от Земли до Марса.

Роль российских ученых в развитии математики: Л. Эйлер. Н.И. Лобачевский, П.Л.Чебышев, С. Ковалевская, А.Н. Колмогоров.

Математика в развитии России: Петр I, школа математических и навигацких наук, развитие российского флота, А.Н. Крылов. Космическая программа и М.В. Келдыш.










Предметные результаты освоения основной образовательной программы основного общего образования с учетом общих требований Стандарта и специфики изучаемых предметов, входящих в состав предметных областей, должны обеспечивать успешное обучение на следующем уровне общего образования.


Предметные результаты изучения предметной области "Математика и информатика" должны отражать:


Математика. Алгебра. Геометрия. Информатика:

1) формирование представлений о математике как о методе познания действительности, позволяющем описывать и изучать реальные процессы и явления:

осознание роли математики в развитии России и мира;

возможность привести примеры из отечественной и всемирной истории математических открытий и их авторов;

2) развитие умений работать с учебным математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли с применением математической терминологии и символики, проводить классификации, логические обоснования, доказательства математических утверждений:

оперирование понятиями: множество, элемент множества, подмножество, принадлежность, нахождение пересечения, объединения подмножества в простейших ситуациях;

решение сюжетных задач разных типов на все арифметические действия;

применение способа поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию;

составление плана решения задачи, выделение этапов ее решения, интерпретация вычислительных результатов в задаче, исследование полученного решения задачи;

нахождение процента от числа, числа по проценту от него, нахождения процентного отношения двух чисел, нахождения процентного снижения или процентного повышения величины;

решение логических задач;

3) развитие представлений о числе и числовых системах от натуральных до действительных чисел; овладение навыками устных, письменных, инструментальных вычислений:

оперирование понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, иррациональное число;

использование свойства чисел и законов арифметических операций с числами при выполнении вычислений;

использование признаков делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении задач;

выполнение округления чисел в соответствии с правилами;

сравнение чисел;

оценивание значения квадратного корня из положительного целого числа;

4) овладение символьным языком алгебры, приемами выполнения тождественных преобразований выражений, решения уравнений, систем уравнений, неравенств и систем неравенств; умения моделировать реальные ситуации на языке алгебры, исследовать построенные модели с использованием аппарата алгебры, интерпретировать полученный результат:

выполнение несложных преобразований для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем;

выполнение несложных преобразований целых, дробно рациональных выражений и выражений с квадратными корнями; раскрывать скобки, приводить подобные слагаемые, использовать формулы сокращенного умножения;

решение линейных и квадратных уравнений и неравенств, уравнений и неравенств, сводящихся к линейным или квадратным, систем уравнений и неравенств, изображение решений неравенств и их систем на числовой прямой;

5) овладение системой функциональных понятий, развитие умения использовать функционально-графические представления для решения различных математических задач, для описания и анализа реальных зависимостей:

определение положения точки по ее координатам, координаты точки по ее положению на плоскости;

нахождение по графику значений функции, области определения, множества значений, нулей функции, промежутков знакопостоянства, промежутков возрастания и убывания, наибольшего и наименьшего значения функции;

построение графика линейной и квадратичной функций;

оперирование на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия;

использование свойств линейной и квадратичной функций и их графиков при решении задач из других учебных предметов;

6) овладение геометрическим языком; развитие умения использовать его для описания предметов окружающего мира; развитие пространственных представлений, изобразительных умений, навыков геометрических построений:

оперирование понятиями: фигура, точка, отрезок, прямая, луч, ломаная, угол, многоугольник, треугольник и четырехугольник, прямоугольник и квадрат, окружность и круг, прямоугольный параллелепипед, куб, шар; изображение изучаемых фигур от руки и с помощью линейки и циркуля;

выполнение измерения длин, расстояний, величин углов с помощью инструментов для измерений длин и углов;

7) формирование систематических знаний о плоских фигурах и их свойствах, представлений о простейших пространственных телах; развитие умений моделирования реальных ситуаций на языке геометрии, исследования построенной модели с использованием геометрических понятий и теорем, аппарата алгебры, решения геометрических и практических задач:

оперирование на базовом уровне понятиями: равенство фигур, параллельность и перпендикулярность прямых, углы между прямыми, перпендикуляр, наклонная, проекция;

проведение доказательств в геометрии;

оперирование на базовом уровне понятиями: вектор, сумма векторов, произведение вектора на число, координаты на плоскости;

решение задач на нахождение геометрических величин (длина и расстояние, величина угла, площадь) по образцам или алгоритмам;

8) овладение простейшими способами представления и анализа статистических данных; формирование представлений о статистических закономерностях в реальном мире и о различных способах их изучения, о простейших вероятностных моделях; развитие умений извлекать информацию, представленную в таблицах, на диаграммах, графиках, описывать и анализировать массивы числовых данных с помощью подходящих статистических характеристик, использовать понимание вероятностных свойств окружающих явлений при принятии решений:

формирование представления о статистических характеристиках, вероятности случайного события;

решение простейших комбинаторных задач;

определение основных статистических характеристик числовых наборов;

оценивание и вычисление вероятности события в простейших случаях;

наличие представления о роли практически достоверных и маловероятных событий, о роли закона больших чисел в массовых явлениях;

умение сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления;

9) развитие умений применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, компьютера, пользоваться оценкой и прикидкой при практических расчетах:

распознавание верных и неверных высказываний;

оценивание результатов вычислений при решении практических задач;

выполнение сравнения чисел в реальных ситуациях;

использование числовых выражений при решении практических задач и задач из других учебных предметов;

решение практических задач с применением простейших свойств фигур;

выполнение простейших построений и измерений на местности, необходимых в реальной жизни;

10) формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;

11) формирование представления об основных изучаемых понятиях: информация, алгоритм, модель - и их свойствах;

12) развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами - линейной, условной и циклической;

13) формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей - таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;

14) формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права;

15) для слепых и слабовидящих обучающихся:

владение правилами записи математических формул и специальных знаков рельефно-точечной системы обозначений Л. Брайля;

владение тактильно-осязательным способом обследования и восприятия рельефных изображений предметов, контурных изображений геометрических фигур и т.п.;

умение читать рельефные графики элементарных функций на координатной плоскости, применять специальные приспособления для рельефного черчения;

владение основным функционалом программы невизуального доступа к информации на экране ПК, умение использовать персональные тифлотехнические средства информационно-коммуникационного доступа слепыми обучающимися;

16) для обучающихся с нарушениями опорно-двигательного аппарата:

владение специальными компьютерными средствами представления и анализа данных и умение использовать персональные средства доступа с учетом двигательных, речедвигательных и сенсорных нарушений;

умение использовать персональные средства доступа.


















Муниципальное казенное общеобразовательное учреждение-

средняя общеобразовательная школа с.Комаровка

Екатериновского района Саратовской области





Согласовано

«___» _____________________20_____г.

Заместитель директора по УВР:

_________________/Е.В.Пантеева/


___

Утверждаю

Приказ №____от «____»_______ 20___г

Директор МКОУ СОШ с.Комаровка:

__________________/Н.А.Володина/






Приложение к рабочей программе по математике

для 6-8 классов












Рассмотрено на заседании

педагогического совета

протокол№______

от «____»________20___г.














Календарно-тематическое планирование по математике в 6 классе

Всего _170__ час; в неделю 5 часов. Плановых контрольных работ _______ , зачётов _________, тестов ________; Учебник__________________________________________________________________

название, автор, издательство, год издания

п/п

Дата План

Дата Факт



Наименование разделов и тем

Всего часов

Примечание




Повторение

7 ч.


1

3.09


Действия с обыкновенными дробями и смешанными числами

1


2

4.09


Делители и кратные. Признаки делимости

1


3,4

5.,6.09


Действия со смешанными числами.

2


5,6

7,10.09


Решение

задач.

2


7

11.09


Входная диагностика

1





Отношения, пропорции, проценты

29


8-10

12-14.09


Отношения чисел и величин

3


11,12

17,18.09


Масштаб

2


13-15

19-21.09


Деление чисел в данном отношении

3


16-19

24-27.09


Пропорции

4


20-23

28.09-3.10


Прямая и обратная пропорциональность

4


24

4.10


Контрольная работа №1по теме «Пропорция»

1


25,26

5,8.10


Понятие о процент

2


27-30

9.10-12.10


Задачи на проценты

4


31,32

15,16.10


Круговые диаграммы

2


33

17.10


Задачи на перебор всех возможных вариантов

1


34,35

18,19.10


Вероятность события

2


36

22.10


Контрольная работа №2 по теме «Проценты»

1





Целые числа

36


37,38

23,24.10


Отрицательные числа

2


39,40

25,26.10


Противоположные числа

2


41,42

6,7.11


Модуль числа

2


43-45

8,9,12.11


Сравнение целых чисел

3


46-49

13-16.11


Сложение целых чисел

4


50-52

19-21.11


Законы сложения целых чисел

3


53-55

22-26.11


Разность целых чисел

3


56,57

27,28.11


Произведение целых чисел

2


58-60

29.11-3.12


Частное целых чисел

3


61-63

4-6.12


Распределительный закон

3


64-66

7-11.12


Раскрытие скобок и заключение в скобки

3


67,68

12,13.12


Действия с суммами нескольких слагаемых

2


69,70

14,17.12


Представление целых чисел на координатной прямой

2


71

18.12


Фигуры на плоскости, симметричные относительно точки

1


72

19.12


Контрольная работа №2 по теме «Целые числа»

1





Рациональные числа

39


73,74 20,21.12

Отрицательные дроби

2


75,76 24,25.12

Рациональные числа

2


77-79

26,27.12,10.01


Сравнение рациональных чисел.

3


80-83

11-17.01


Сложение и вычитание дробей.

4


84-87

18-23.01


Умножение и деление дробей.

4


88-91

24-29.01


Законы сложения и умножения

4


92

30.01


Контрольная работа по теме №4«Рациональные числа»

1


93-96

31.01-5.02


Смешанные дроби произвольного знака.


4


97-99

6.02-8.02


Изображение рациональных чисел на координатной прямой.


3


100-103

11-14.02


Приведение подобных слагаемых

Уравнения.


4


104-107

15.02-20.02


Решение задач с помощью уравнений.


4


108

21.02


Буквенные выражения.

1


109

22.02


Фигуры симметричные относительно прямой.

1


110

25.02


Контрольная работа №5.

1


111

26.02


Анализ контрольной работы

1





Десятичные дроби

31


112,113

27,28.02


Понятие положительной десятичной дроби


2


114-116

1-5.03


Сравнение положительных десятичных дробей


3


117-120

6-12.03


Сложение и вычитание положительных десятичных дробей


4


121,122

13,14.03


Перенос запятой в положительной десятичной дроби


2


123-126

15-20.03


Умножение положительных десятичных дробей

4



176-130

21.03-4.04


Деление положительных десятичных дробей

4


131

5.04


Контрольная работа №6

1


132,133

8,9.04


Десятичные дроби и проценты

2



134,135

10,11.04


Сложные задачи на проценты

2


136,137

12,15.04


Десятичные дроби произвольного знака

2


138,139

16,17.04


Приближение десятичных дробей

2



140,141

18,19.04


Приближение суммы, разности, произведения и частного двух чисел

2


142

22.04


Контрольная работа №7

1





Глава 5 Обыкновенные и десятичные дроби

20


143

23.04


Разложение положительной обыкновенной дроби в конечную десятичную дробь

1


144

24.04


Разложение положительной обыкновенной дроби в конечную десятичную дробь

1


145

25.04


Периодические десятичные дроби

1


146

26.04


Периодические десятичные дроби

1


147

29.04


Непериодические десятичные дроби

1


148

30.04


Непериодические десятичные дроби

1


149

6.05


Длина отрезка

1


150

8.05


Длина отрезка

1


151

13.05


Длина окружности. Площадь круга

1


152

14.05


Длина окружности. Площадь круга

1


153

15.05


Длина окружности. Площадь круга

1


154

16.05


Координатная ось

1


155

17.05


Координатная ось

1


156

20.05


Координатная ось

1


157

21.05


Декартова система координат на плоскости

1


158

22.05


Декартова система координат на плоскости

1


159

23.05


Столбчатые диаграммы и графики

1


160

24.05


Столбчатые диаграммы и графики

1


161



Контрольная работа №8

1





Занимательные задачи

1


162



Повторение

8


163



Прямая и обратная пропорциональность

1


164



Действия с положительными десятичными дробями

1


165



Задачи на проценты

1


166



Десятичные дроби любого знака

1


167



Десятичные дроби любого знака

1


168



Решение текстовых задач

1


169



Решение текстовых задач

1


170



Итоговая контрольная работа №9

1





Итого

170



1 Здесь и далее – распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

2 Здесь и далее – знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

3 Здесь и далее – распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

4 Здесь и далее – знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.

5 Здесь и далее – знать определение понятия, знать и уметь доказывать свойства (признаки, если они есть) понятия, характеризовать связи с другими понятиями, представляя одно понятие как часть целостного комплекса, использовать понятие и его свойства при проведении рассуждений, доказательств, решении задач.


Получите в подарок сайт учителя

Предмет: Математика

Категория: Планирование

Целевая аудитория: 6 класс

Скачать
Рабочая программа по математике

Автор: Степанова Татьяна Владимировна

Дата: 20.05.2019

Номер свидетельства: 511347

Похожие файлы

object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(79) "Рабочая программа  «Математика» 5 - 6 классы "
    ["seo_title"] => string(43) "rabochaia-proghramma-matiematika-5-6-klassy"
    ["file_id"] => string(6) "109356"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1404396370"
  }
}
object(ArrayObject)#873 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(101) "Рабочая программа. Математика. 3 класс УМК "Перспектива""
    ["seo_title"] => string(54) "rabochaia_programma_matematika_3_klass_umk_perspektiva"
    ["file_id"] => string(6) "564448"
    ["category_seo"] => string(16) "nachalniyeKlassi"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1606312679"
  }
}
object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(70) "Рабочая программа. Математика. 1 класс."
    ["seo_title"] => string(38) "rabochaia_programma_matematika_1_klass"
    ["file_id"] => string(6) "481733"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1540274670"
  }
}
object(ArrayObject)#873 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(71) "РАБОЧАЯ ПРОГРАММА    по  русскому языку "
    ["seo_title"] => string(38) "rabochaia-programma-po-russkomu-iazyku"
    ["file_id"] => string(6) "157837"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1421660204"
  }
}
object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(104) "Рабочая программа. Математика 5 класс. И.И. Зубарева. ФГОС "
    ["seo_title"] => string(59) "rabochaia-proghramma-matiematika-5-klass-i-i-zubarieva-fgos"
    ["file_id"] => string(6) "231544"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1442518296"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1600 руб.
2660 руб.
1440 руб.
2400 руб.
1360 руб.
2260 руб.
1500 руб.
2500 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства