kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Рабочая программа по математике для 10-11 класса базового уровня

Нажмите, чтобы узнать подробности

Данная программа рекомендована для учителей математики с целью обучения учащихся 10-11 класса математике на базовом уровне

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Рабочая программа по математике для 10-11 класса базового уровня»









РАБОЧАЯ ПРОГРАММА

по предмету «Математика: алгебра и начала анализа и геометрия»

(базовый уровень)

10-11 классы




















  1. Планируемые результаты освоения учебного предмета «Математика: алгебра и начала анализа и геометрия»

  1. Личностные результаты:

Личностные результаты в сфере отношений обучающихся к себе, к своему здоровью, к познанию себя:

ориентация обучающихся на достижение личного счастья, реализацию позитивных жизненных перспектив, инициативность, креативность,

готовность и способность к личностному самоопределению, способность ставить цели и строить жизненные планы;

готовность и способность обеспечить себе и своим близким достойную жизнь в процессе самостоятельной, творческой и ответственной

деятельности;

готовность и способность обучающихся к отстаиванию личного достоинства, собственного мнения, готовность и способность

вырабатывать собственную позицию по отношению к общественно-политическим событиям прошлого и настоящего на основе осознания и

осмысления истории, духовных ценностей и достижений нашей страны;

готовность и способность обучающихся к саморазвитию и самовоспитанию в соответствии с общечеловеческими ценностями и идеалами

гражданского общества, потребность в физическом самосовершенствовании, занятиях спортивно-оздоровительной деятельностью;

принятие и реализация ценностей здорового и безопасного образа жизни, бережное, ответственное и компетентное отношение к

собственному физическому и психологическому здоровью;

неприятие вредных привычек: курения, употребления алкоголя, наркотиков.

Личностные результаты в сфере отношений обучающихся к России как к Родине (Отечеству):

российская идентичность, способность к осознанию российской идентичности в поликультурном социуме, чувство причастности к

историко-культурной общности российского народа и судьбе России, патриотизм, готовность к служению Отечеству, его защите;

уважение к своему народу, чувство ответственности перед Родиной, гордости за свой край, свою Родину, прошлое и настоящее

многонационального народа России, уважение к государственным символам (герб, флаг, гимн);

формирование уважения к русскому языку как государственному языку Российской Федерации, являющемуся основой российской

идентичности и главным фактором национального самоопределения;

воспитание уважения к культуре, языкам, традициям и обычаям народов, проживающих в Российской Федерации.

Личностные результаты в сфере отношений обучающихся к закону, государству и к гражданскому обществу:

гражданственность , гражданская позиция активного и ответственного члена российского общества, осознающего свои конституционные

права и обязанности, уважающего закон и правопорядок, осознанно принимающего традиционные национальные и общечеловеческие

гуманистические и демократические ценности, готового к участию в общественной жизни;

признание неотчуждаемости основных прав и свобод человека, которые принадлежат каждому от рождения, готовность к осуществлению

собственных прав и свобод без нарушения прав и свобод других лиц, готовность отстаивать собственные права и свободы человека и гражданина согласно общепризнанным принципам и нормам международного права и в соответствии с Конституцией Российской

Федерации, правовая и политическая грамотность;

мировоззрение, соответствующее современному уровню развития науки и общественной практики, основанное на диалоге культур, а также

различных форм общественного сознания, осознание своего места в поликультурном мире;

интериоризация ценностей демократии и социальной солидарности, готовность к договорному регулированию отношений в группе или

социальной организации;

готовность обучающихся к конструктивному участию в принятии решений, затрагивающих их права и интересы, в том числе в различных

формах общественной самоорганизации, самоуправления, общественно значимой деятельности;

приверженность идеям интернационализма, дружбы, равенства, взаимопомощи народов; воспитание уважительного отношения к

национальному достоинству людей, их чувствам, религиозным убеждениям;

Личностные результаты в сфере отношений обучающихся с окружающими людьми:

нравственное сознание и поведение на основе усвоения общечеловеческих ценностей, толерантного сознания и поведения в

поликультурном мире, готовности и способности вести диалог с другими людьми, достигать в нем взаимопонимания, находить общие цели

и сотрудничать для их достижения;

принятие гуманистических ценностей, осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению,

мировоззрению;

способность к сопереживанию и формирование позитивного отношения к людям, в том числе к лицам с ограниченными возможностями

здоровья и инвалидам; бережное, ответственное и компетентное отношение к физическому и психологическому здоровью других людей,

умение оказывать первую помощь;

формирование выраженной в поведении нравственной позиции, в том числе способности к сознательному выбору добра, нравственного

сознания и поведения на основе усвоения общечеловеческих ценностей и нравственных чувств (чести, долга, справедливости, милосердия

и дружелюбия);

развитие компетенций сотрудничества со сверстниками, детьми младшего возраста, взрослыми в образовательной, общественно полезной,

учебно-исследовательской, проектной и других видах деятельности.

Личностные результаты в сфере отношений обучающихся к окружающему миру, живой природе, художественной культуре:

мировоззрение, соответствующее современному уровню развития науки, значимости науки, готовность к научно-техническому творчеству,

владение достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки, заинтересованность в научных

знаниях об устройстве мира и общества;

готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к

непрерывному образованию как условию успешной профессиональной и общественной деятельности;

экологическая культура, бережное отношения к родной земле, природным богатствам России и мира; понимание влияния социально-

экономических процессов на состояние природной и социальной среды, ответственность за состояние природных ресурсов; умения и

навыки разумного природопользования, нетерпимое отношение к действиям, приносящим вред экологии; приобретение опыта эколого-

направленной деятельности;

эстетическое отношения к миру, готовность к эстетическому обустройству собственного быта.

Личностные результаты в сфере отношений обучающихся к семье и родителям, в том числе подготовка к семейной жизни:

ответственное отношение к созданию семьи на основе осознанного принятия ценностей семейной жизни;

положительный образ семьи, родительства (отцовства и материнства), интериоризация традиционных семейных ценностей.

Личностные результаты в сфере отношения обучающихся к труду, в сфере социально-экономических отношений:

уважение ко всем формам собственности, готовность к защите своей собственности,

осознанный выбор будущей профессии как путь и способ реализации собственных жизненных планов;

готовность обучающихся к трудовой профессиональной деятельности как к возможности участия в решении личных, общественных,

государственных, общенациональных проблем;

потребность трудиться, уважение к труду и людям труда, трудовым достижениям, добросовестное, ответственное и творческое отношение

к разным видам трудовой деятельности;

готовность к самообслуживанию, включая обучение и выполнение домашних обязанностей.

Личностные результаты в сфере физического, психологического, социального и академического благополучия обучающихся:

физическое, эмоционально-психологическое, социальное благополучие обучающихся в жизни образовательной организации, ощущение

детьми безопасности и психологического комфорта, информационной безопасности.

2. Метапредметные результаты

2.1 Регулятивные УУД

Выпускник научится:

самостоятельно определять цели, задавать параметры и критерии, по которым можно определить, что цель достигнута;

оценивать возможные последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей,

основываясь на соображениях этики и морали;

ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;

оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной цели;

выбирать путь достижения цели, планировать решение поставленных задач, оптимизируя материальные и нематериальные затраты; организовывать эффективный поиск ресурсов, необходимых для достижения поставленной цели;

сопоставлять полученный результат деятельности с поставленной заранее целью.

2.2 Познавательные УУД

Выпускник научится:

искать и находить обобщенные способы решения задач, в том числе, осуществлять развернутый информационный поиск и ставить на его

основе новые (учебные и познавательные) задачи;

критически оценивать и интерпретировать информацию с разных позиций, распознавать и фиксировать противоречия в информационных

источниках;

использовать различные модельно-схематические средства для представления существенных связей и отношений, а также противоречий,

выявленных в информационных источниках;

находить и приводить критические аргументы в отношении действий и суждений другого; спокойно и разумно относиться к критическим

замечаниям в отношении собственного суждения, рассматривать их как ресурс собственного развития;

выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможностей для широкого переноса средств и способов

действия;

выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные

ограничения;

менять и удерживать разные позиции в познавательной деятельности.

2.3 Коммуникативные УУД

Выпускник научится:

осуществлять деловую коммуникацию как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее

пределами), подбирать партнеров для деловой коммуникации исходя из соображений результативности взаимодействия, а не личных

симпатий;

при осуществлении групповой работы быть как руководителем, так и членом команды в разных ролях (генератор идей, критик,

исполнитель, выступающий, эксперт и т.д.);

координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;

распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы, выстраивать деловую и образовательную

коммуникацию, избегая личностных оценочных суждений.

3. Предметные результаты

В результате изучения учебного предмета «Математика: алгебра и начала математического анализа, геометрия» на уровне

среднего общего образования выпускник на базовом уровне научится:


Название раздела


Базовый уровень

«Проблемно-функциональные результаты»

I. Выпускник научится

на базовом уровне

II. Выпускник получит возможность

научиться на базовом уровне

Цели освоения предмета

Для использования в повседневной жизни и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики

Для развития мышления, использования в повседневной жизни

и обеспечения возможности успешного продолжения образования по специальностям, не связанным с прикладным использованием математики


Требования к результатам


Элементы теории множеств и математической логики

  • Оперировать на базовом уровне1 понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал;

  • оперировать на базовом уровне понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;

  • находить пересечение и объединение двух множеств, представленных графически на числовой прямой;

  • строить на числовой прямой подмножество числового множества, заданное простейшими условиями;

  • распознавать ложные утверждения, ошибки в рассуждениях, в том числе с использованием контрпримеров.

В повседневной жизни и при изучении других предметов:

  • использовать числовые множества на координатной прямой для описания реальных процессов и явлений;

  • проводить логические рассуждения в ситуациях повседневной жизни

  • Оперировать2 понятиями: конечное множество, элемент множества, подмножество, пересечение и объединение множеств, числовые множества на координатной прямой, отрезок, интервал, полуинтервал, промежуток с выколотой точкой, графическое представление множеств на координатной плоскости;

  • оперировать понятиями: утверждение, отрицание утверждения, истинные и ложные утверждения, причина, следствие, частный случай общего утверждения, контрпример;

  • проверять принадлежность элемента множеству;

  • находить пересечение и объединение множеств, в том числе представленных графически на числовой прямой и на координатной плоскости;

  • проводить доказательные рассуждения для обоснования истинности утверждений.

В повседневной жизни и при изучении других предметов:

  • использовать числовые множества на координатной прямой и на координатной плоскости для описания реальных процессов и явлений;

  • проводить доказательные рассуждения в ситуациях повседневной жизни, при решении задач из других предметов

Числа и выражения

  • Оперировать на базовом уровне понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближённое значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб;

  • оперировать на базовом уровне понятиями: тригонометрическая окружность, градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину;

  • выполнять арифметические действия с целыми и рациональными числами;

  • выполнять несложные преобразования числовых выражений, содержащих степени чисел, либо корни из чисел.

  • сравнивать рациональные числа между собой;

  • оценивать и сравнивать с рациональными числами значения целых степеней чисел, корней натуральной степени из чисел в простых случаях;

  • изображать точками на числовой прямой целые и рациональные числа;

  • изображать точками на числовой прямой целые степени чисел, корни натуральной степени из чисел в простых случаях;

  • выполнять несложные преобразования целых и дробно-рациональных буквенных выражений;

  • выражать в простейших случаях из равенства одну переменную через другие;

  • вычислять в простых случаях значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

  • изображать схематически угол, величина которого выражена в градусах;

  • оценивать знаки синуса, косинуса, тангенса, котангенса конкретных углов.

В повседневной жизни и при изучении других учебных предметов:

  • выполнять вычисления при решении задач практического характера;

  • выполнять практические расчеты с использованием при необходимости справочных материалов и вычислительных устройств;

  • соотносить реальные величины, характеристики объектов окружающего мира с их конкретными числовыми значениями;

  • использовать методы округления, приближения и прикидки при решении практических задач повседневной жизни

  • Свободно оперировать понятиями: целое число, делимость чисел, обыкновенная дробь, десятичная дробь, рациональное число, приближённое значение числа, часть, доля, отношение, процент, повышение и понижение на заданное число процентов, масштаб;

  • приводить примеры чисел с заданными свойствами делимости;

  • оперировать понятиями: тригонометрическая окружность, радианная и градусная мера угла, величина угла, заданного точкой на тригонометрической окружности, синус, косинус, тангенс и котангенс углов, имеющих произвольную величину, числа е и π;

  • выполнять арифметические действия, сочетая устные и письменные приемы, применяя при необходимости вычислительные устройства;

  • находить значения корня натуральной степени, степени с рациональным показателем используя при необходимости вычислительные устройства;

  • пользоваться оценкой и прикидкой при практических расчетах;

  • проводить по известным формулам и правилам преобразования буквенных выражений, включающих степени, корни, тригонометрические функции;

  • находить значения числовых и буквенных выражений, осуществляя необходимые подстановки и преобразования;

  • изображать схематически угол, величина которого выражена в градусах или радианах;

  • использовать при решении задач табличные значения тригонометрических функций углов;

  • выполнять перевод величины угла из радианной меры в градусную и обратно.

В повседневной жизни и при изучении других учебных предметов:

  • выполнять действия с числовыми данными при решении задач практического характера и задач из различных областей знаний, используя при необходимости справочные материалы и вычислительные устройства;

  • оценивать, сравнивать и использовать при решении практических задач числовые значения реальных величин, конкретные числовые характеристики объектов окружающего мира

Уравнения и неравенства


  • Решать линейные уравнения и неравенства, квадратные уравнения;

  • приводить несколько примеров корней простейшего тригонометрического уравнения вида: sin x = a, cos x = a, tg x = a, ctg x = a, где a – табличное значение соответствующей тригонометрической функции.

В повседневной жизни и при изучении других предметов: составлять и решать уравнения и системы уравнений при решении несложных практических задач

  • Решать рациональные, простейшие иррациональные и тригонометрические уравнения, неравенства и их системы;

  • использовать методы решения уравнений: приведение к виду «произведение равно нулю» или «частное равно нулю», замена переменных;

  • использовать метод интервалов для решения неравенств;

  • использовать графический метод для приближенного решения уравнений и неравенств;

  • изображать на тригонометрической окружности множество решений простейших тригонометрических уравнений и неравенств;

  • выполнять отбор корней уравнений или решений неравенств в соответствии с дополнительными условиями и ограничениями.

В повседневной жизни и при изучении других учебных предметов:

  • составлять и решать уравнения, системы уравнений и неравенства при решении задач других учебных предметов;

  • использовать уравнения и неравенства для построения и исследования простейших математических моделей реальных ситуаций или прикладных задач.

Функции

  • Оперировать на базовом уровне понятиями: зависимость величин, функция, аргумент и значение функции, область

  • определения и множество значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период;

  • оперировать на базовом уровне понятиями: прямая и обратная пропорциональность линейная, квадратичная, логарифмическая и показательная функции, тригонометрические функции;

  • распознавать графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, тригонометрических функций;

  • соотносить графики элементарных функций: прямой и обратной пропорциональности, линейной, квадратичной, тригонометрических функций с формулами, которыми они заданы;

  • находить по графику приближённо значения функции в заданных точках;

  • определять по графику свойства функции (нули, промежутки знакопостоянства, промежутки монотонности, наибольшие и наименьшие значения и т.п.);

  • строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания / убывания, значение функции в заданной точке, точки экстремумов и т.д.).

  • В повседневной жизни и при изучении других предметов:

  • определять по графикам свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания, промежутки знакопостоянства и т.п.);

  • интерпретировать свойства в контексте конкретной практической ситуации

  • Оперировать понятиями: зависимость величин, функция, аргумент и значение функции, область определения и множество

  • значений функции, график зависимости, график функции, нули функции, промежутки знакопостоянства, возрастание на числовом промежутке, убывание на числовом промежутке, наибольшее и наименьшее значение функции на числовом промежутке, периодическая функция, период, четная и нечетная функции;

  • оперировать понятиями: прямая и обратная пропорциональность, линейная, квадратичная, тригонометрические функции;

  • определять значение функции по значению аргумента при различных способах задания функции;

  • строить графики изученных функций;

  • описывать по графику и в простейших случаях по формуле поведение и свойства функций, находить по графику функции наибольшие и наименьшие значения;

  • строить эскиз графика функции, удовлетворяющей приведенному набору условий (промежутки возрастания/убывания, значение функции в заданной точке, точки экстремумов, асимптоты, нули функции и т.д.);

  • решать уравнения, простейшие системы уравнений, используя свойства функций и их графиков.

В повседневной жизни и при изучении других учебных предметов:

  • определять по графикам и использовать для решения прикладных задач свойства реальных процессов и зависимостей (наибольшие и наименьшие значения, промежутки возрастания и убывания функции, промежутки знакопостоянства, асимптоты, период и т.п.);

  • интерпретировать свойства в контексте конкретной практической ситуации;

  • определять по графикам простейшие характеристики периодических процессов в биологии, экономике, музыке, радиосвязи и др. (амплитуда, период и т.п.)

Элементы математического анализа

  • Оперировать на базовом уровне понятиями: производная функции в точке, касательная к графику функции, производная функции;

  • определять значение производной функции в точке по изображению касательной к графику, проведенной в этой точке;

  • решать несложные задачи на применение связи между промежутками монотонности и точками экстремума функции, с одной стороны, и промежутками знакопостоянства и нулями производной этой функции – с другой.

В повседневной жизни и при изучении других предметов:

  • пользуясь графиками, сравнивать скорости возрастания (роста, повышения, увеличения и т.п.) или скорости убывания (падения, снижения, уменьшения и т.п.) величин в реальных процессах;

  • соотносить графики реальных процессов и зависимостей с их описаниями, включающими характеристики скорости изменения (быстрый рост, плавное понижение и т.п.);

  • использовать графики реальных процессов для решения несложных прикладных задач, в том числе определяя по графику скорость хода процесса

  • Оперировать понятиями: производная функции в точке, касательная к графику функции, производная функции;

  • вычислять производную одночлена, многочлена, квадратного корня, производную суммы функций;

  • вычислять производные элементарных функций и их комбинаций, используя справочные материалы;

  • исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа.

В повседневной жизни и при изучении других учебных предметов:

  • решать прикладные задачи из биологии, физики, химии, экономики и других предметов, связанные с исследованием характеристик реальных процессов, нахождением наибольших и наименьших значений, скорости и ускорения и т.п.;

  • интерпретировать полученные результаты

Статистика и теория вероятностей, логика и комбинаторика


  • Оперировать на базовом уровне основными описательными характеристиками числового набора: среднее арифметическое, медиана, наибольшее и наименьшее значения;

  • оперировать на базовом уровне понятиями: частота и вероятность события, случайный выбор, опыты с равновозможными элементарными событиями;

  • вычислять вероятности событий на основе подсчета числа исходов.

В повседневной жизни и при изучении других предметов:

  • оценивать и сравнивать в простых случаях вероятности событий в реальной жизни;

  • читать, сопоставлять, сравнивать, интерпретировать в простых случаях реальные данные, представленные в виде таблиц, диаграмм, графиков

  • Иметь представление о дискретных и непрерывных случайных величинах и распределениях, о независимости случайных величин;

  • иметь представление о математическом ожидании и дисперсии случайных величин;

  • иметь представление о нормальном распределении и примерах нормально распределенных случайных величин;

  • понимать суть закона больших чисел и выборочного метода измерения вероятностей;

  • иметь представление об условной вероятности и о полной вероятности, применять их в решении задач;

  • иметь представление о важных частных видах распределений и применять их в решении задач;

В повседневной жизни и при изучении других предметов:

  • вычислять или оценивать вероятности событий в реальной жизни;

  • выбирать подходящие методы представления и обработки данных;

  • уметь решать несложные задачи на применение закона больших чисел в социологии, страховании, здравоохранении, обеспечении безопасности населения в чрезвычайных ситуациях

Текстовые задачи

  • Решать несложные текстовые задачи разных типов;

  • анализировать условие задачи, при необходимости строить для ее решения математическую модель;

  • понимать и использовать для решения задачи информацию, представленную в виде текстовой и символьной записи, схем, таблиц, диаграмм, графиков, рисунков;

  • действовать по алгоритму, содержащемуся в условии задачи;

  • использовать логические рассуждения при решении задачи;

  • работать с избыточными условиями, выбирая из всей информации, данные, необходимые для решения задачи;

  • осуществлять несложный перебор возможных решений, выбирая из них оптимальное по критериям, сформулированным в условии;

  • анализировать и интерпретировать полученные решения в контексте условия задачи, выбирать решения, не противоречащие контексту;

  • решать задачи на расчет стоимости покупок, услуг, поездок и т.п.;

  • решать несложные задачи, связанные с долевым участием во владении фирмой, предприятием, недвижимостью;

  • решать задачи на простые проценты (системы скидок, комиссии) и на вычисление сложных процентов в различных схемах вкладов, кредитов и ипотек;

  • решать практические задачи, требующие использования отрицательных чисел: на определение температуры, на определение положения на временнóй оси (до нашей эры и после), на движение денежных средств (приход/расход), на определение глубины/высоты и т.п.;

  • использовать понятие масштаба для нахождения расстояний и длин на картах, планах местности, планах помещений, выкройках, при работе на компьютере и т.п.

В повседневной жизни и при изучении других предметов: решать несложные практические задачи, возникающие в ситуациях повседневной жизни

  • Решать задачи разных типов, в том числе задачи повышенной трудности;

  • выбирать оптимальный метод решения задачи, рассматривая различные методы;

  • строить модель решения задачи, проводить доказательные рассуждения;

  • решать задачи, требующие перебора вариантов, проверки условий, выбора оптимального результата;

  • анализировать и интерпретировать результаты в контексте условия задачи, выбирать решения, не противоречащие контексту;

  • переводить при решении задачи информацию из одной формы в другую, используя при необходимости схемы, таблицы, графики, диаграммы;

В повседневной жизни и при изучении других предметов:

  • решать практические задачи и задачи из других предметов

Геометрия

  • Оперировать на базовом уровне понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;

  • распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб);

  • изображать изучаемые фигуры от руки и с применением простых чертежных инструментов;

  • делать (выносные) плоские чертежи из рисунков простых объемных фигур: вид сверху, сбоку, снизу;

  • извлекать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках;

  • применять теорему Пифагора при вычислении элементов стереометрических фигур;

  • находить объемы и площади поверхностей простейших многогранников с применением формул;

  1. В повседневной жизни и при изучении других предметов:

  • соотносить абстрактные геометрические понятия и факты с реальными жизненными объектами и ситуациями;

  • использовать свойства пространственных геометрических фигур для решения типовых задач практического содержания;

  • соотносить площади поверхностей тел одинаковой формы различного размера;

  • оценивать форму правильного многогранника после спилов, срезов и т.п. (определять количество вершин, ребер и граней полученных многогранников)

  • Оперировать понятиями: точка, прямая, плоскость в пространстве, параллельность и перпендикулярность прямых и плоскостей;

  • применять для решения задач геометрические факты, если условия применения заданы в явной форме;

  • решать задачи на нахождение геометрических величин по образцам или алгоритмам;

  • делать (выносные) плоские чертежи из рисунков объемных фигур, в том числе рисовать вид сверху, сбоку, строить сечения многогранников;

  • извлекать, интерпретировать и преобразовывать информацию о геометрических фигурах, представленную на чертежах;

  • применять геометрические факты для решения задач, в том числе предполагающих несколько шагов решения;

  • описывать взаимное расположение прямых и плоскостей в пространстве;

  • формулировать свойства и признаки фигур;

  • доказывать геометрические утверждения;

  • владеть стандартной классификацией пространственных фигур (пирамиды, призмы, параллелепипеды);

  • находить площади поверхностей геометрических тел с применением формул;

  • вычислять расстояния и углы в пространстве.

В повседневной жизни и при изучении других предметов:

  • использовать свойства геометрических фигур для решения задач практического характера и задач из других областей знаний

Векторы и координаты в пространстве

  • Оперировать на базовом уровне понятием декартовы координаты в пространстве;

  • находить координаты вершин куба и прямоугольного параллелепипеда

  • Оперировать понятиями декартовы координаты в пространстве, вектор, модуль вектора, равенство векторов, координаты вектора, угол между векторами, скалярное произведение векторов, коллинеарные векторы;

История математики


  • Описывать отдельные выдающиеся результаты, полученные в ходе развития математики как науки;

  • знать примеры математических открытий и их авторов в связи с отечественной и всемирной историей;

  • понимать роль математики в развитии России

  • Представлять вклад выдающихся математиков в развитие математики и иных научных областей;

  • понимать роль математики в развитии России

Методы математики

  • Применять известные методы при решении стандартных математических задач;

  • замечать и характеризовать математические закономерности в окружающей действительности;

  • приводить примеры математических закономерностей в природе, в том числе характеризующих красоту и совершенство окружающего мира и произведений искусства

  • Использовать основные методы доказательства, проводить доказательство и выполнять опровержение;

  • применять основные методы решения математических задач;

  • на основе математических закономерностей в природе характеризовать красоту и совершенство окружающего мира и произведений искусства;

  • применять простейшие программные средства и электронно-коммуникацион ные системы при решении математических задач



2. Содержание учебного предмета «Математика: алгебра и начала математического анализа, геометрия»

(базовый уровень)

10 класс


Название раздела

Краткое содержание.

Кол-во часов

Алгебра и начала анализа


88 ч.

Алгебра

Повторение. Преобразования простейших выражений. ( 8 ч = 3+5ч ) (Некоторые сведения алгебры.) Понятие натурального числа. Множества чисел. Свойства действительных чисел. Преобразования простейших выражений, включающих арифметические операции, а также операцию возведения в степень Решение задач с использованием свойств чисел и систем счисления, делимости, долей и частей, процентов, модулей чисел. Решение задач с использованием свойств степеней и корней, многочленов, Решение задач с использованием градусной меры угла. Модуль числа и его свойства. Решение задач на движение и совместную работу с помощью линейных и квадратных уравнений и их систем. Решение задач с помощью числовых неравенств и систем неравенств с одной переменной, с применением изображения числовых промежутков.

Решение задач с использованием числовых функций и их графиков. Использование свойств и графиков линейных и квадратичных функций, обратной пропорциональности . Графическое решение уравнений и неравенств.

Основы тригонометрии. ( 24 ч)Тригонометрическая окружность, радианная мера угла. Синус, косинус, тангенс, котангенс произвольного угла. Основное тригонометрическое тождество и следствия из него. Значения тригонометрических функций для углов 0, 30, 45, 60, 90, 180, 270. ( рад). Формулы сложения тригонометрических функций, формулы приведения, формулы двойного аргумента.

Арккосинус, арксинус, арктангенс числа. Арккотангенс числа. Формулы приведения. Синус, косинус и тангенс суммы и разности двух углов. Синус и косинус двойного угла. Простейшие тригонометрические уравнения. Решение тригонометрических уравнений. Решение простейших тригонометрических неравенств.

32 ч.

Функции


Функции. Область определения и множество значений. График функции. Нули функции, промежутки знакопостоянства, монотонность. Наибольшее и наименьшее значение функции. Периодические функции. Четность и нечетность функций. Сложные функции. Тригонометрические функции . Функция . Свойства и графики тригонометрических функций: периодичность, основной период. Обратная функция. График обратной функции Обратные тригонометрические функции, их свойства и графики.

26 ч

Начала математического анализа

Понятие о пределе последовательности. Существование предела монотонной ограниченной последовательности. Длина окружности и площадь круга как пределы последовательностей. Бесконечно убывающая геометрическая прогрессия и ее сумма. Понятие о непрерывности функции. (3 ч)

Производная функции в точке. Касательная к графику функции. Геометрический и физический смысл производной. Производные элементарных функций. Правила дифференцирования. Вторая производная, ее геометрический и физический смысл. Понятие о непрерывных функциях. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных. Применение производной при решении задач.(21 ч)

24 ч

Элементы комбинаторики, статистики и теории вероятностей.

Формулы числа перестановок, сочетаний, размещений. Решение комбинаторных задач. Формула бинома Ньютона. Свойства биномиальных коэффициентов. Треугольник Паскаля. Табличное и графическое представление данных. Числовые характеристики рядов данных. Поочередный и одновременный выбор нескольких элементов из конечного множества

Рассмотрение случаев и вероятность суммы несовместных событий, вероятность противоположного события. Понятие о независимости событий. Вероятность и статистическая частота наступления события.

6 ч


Геометрия.


Повторение. Решение задач с применением свойств фигур на плоскости. Задачи на доказательство и построение контрпримеров. Использование в задачах простейших логических правил. Решение задач с использованием теорем о треугольниках, соотношений в прямоугольных треугольниках, фактов, связанных с четырехугольниками. Решение задач с использованием фактов, связанных с окружностями. Решение задач на измерения на плоскости, вычисление длин и площадей. Наглядная стереометрия. (4 ч)

Фигуры и их изображения (куб, пирамида, призма). Точка, прямая и плокость впространстве, аксиомы стереометрии и следствия из них.

Параллельность прямых и плоскостей в пространстве.(14ч) Взаимное расположение прямых и плоскостей в пространстве. Сечения куба и тетраэдра. Изображение простейших пространственных фигур на плоскости. Расстояния между фигурами в пространстве. Углы в пространстве.

Перпендикулярность прямых и плоскостей.(14ч) Проекция фигуры на плоскость. Признаки перпендикулярности прямых и плоскостей в пространстве. Теорема о трех перпендикулярах.

Многогранники.(10 ч) Вершины, ребра, грани многогранника. Развертка. Многогранные углы. Выпуклые многогранники. Теорема Эйлера.

Призма, ее основания, боковые ребра, высота, боковая поверхность. Прямая и наклонная призма. Правильная призма. Параллелепипед. Куб. Пирамида,ее основание, боковые ребра, высота, боковая поверхность. Треугольная пирамида. Правильная пирамида. Усеченная пирамида. Формулы площади поверхностей. Симметрии в кубе, в параллелепипеде, в призме и пирамиде. Понятие о симметрии в пространстве (центральная, осевая, зеркальная). Примеры симметрий в окружающем мире. Сечения куба, призмы, пирамиды. Представление о правильных многогранниках (тетраэдр, куб, октаэдр, додекаэдр и икосаэдр)Параллелепипед. Свойства прямоугольного параллелепипеда. Теорема Пифагора в пространстве. Призма и пирамида. Правильная пирамида и правильная призма. Прямая пирамида. Элементы призмы и пирамиды

Координаты и векторы.(6 ч) Векторы. Модуль вектора. Равенство векторов. Сложение векторов и умножение вектора на число. Коллинеарные векторы. Разложение вектора по двум неколлинеарным векторам. Компланарные векторы. Разложение по трем некомпланарным векторам.

48 ч


Итого:


136 ч.



11 класс


Название раздела

Краткое содержание

Алгебра и начала анализа


Алгебра

Действительные числа Степень с действительным показателем, свойства степени Логарифм числа, свойства логарифма. Десятичный логарифм. Число е. Натуральный логарифм. Преобразование логарифмических выражений. Решение уравнений степени выше 2 специальных видов. Теорема Виета, теорема Безу. Приводимые и неприводимые многочлены. Основная теорема алгебры. Симметрические многочлены. Целочисленные и целозначные многочлены. Методы решения функциональных уравнений и неравенств.

Преобразование выражений Преобразование логарифмических, показательных ,иррациональных выражений.

Уравнения, неравенства и их системы Простейшие показательные уравнения и неравенства. Логарифмические уравнения и неравенства. Иррациональные уравнения. Метод интервалов для решения неравенств. Графические методы решения уравнений и неравенств. Решение уравнений и неравенств, содержащих переменную под знаком модуля. Системы показательных, логарифмических и иррациональных уравнений. Системы показательных, логарифмических неравенств. Уравнения, системы уравнений с параметром. Системы показательных, логарифмических и иррациональных уравнений. Системы показательных, логарифмических неравенств.


Функции

Показательная функция и ее свойства и график. Число и функция . Логарифмическая функция и ее свойства и график. Степенная функция и ее свойства и график. Преобразования графиков функций: сдвиг вдоль координатных осей, растяжение и сжатие, отражение относительно координатных осей Точки экстремума (максимума и минимума). Понятие о непрерывных функциях. Точки экстремума (максимума и минимума). Исследование элементарных функций на точки экстремума, наибольшее и наименьшее значение с помощью производной. Построение графиков функций с помощью производных.

Элементы математического анализа .

Производные элементарных функций. Правила дифференцирования. Применение производной при решении задач Первообразная. Первообразные элементарных функций. Площадь криволинейной трапеции. Формула Ньютона-Лейбница. Определенный интеграл. Вычисление площадей плоских фигур и объемов тел вращения с помощью интеграла

Элементы комбинаторики, статистики и теории вероятностей.

Повторение. Решение задач на табличное и графическое представление данных. Использование свойств и характеристик числовых наборов: средних, наибольшего и наименьшего значения, размаха, дисперсии. Решение задач на определение частоты и вероятности событий. Вычисление вероятностей в опытах с равновозможными элементарными исходами. Решение задач с применением комбинаторики. Решение задач на вычисление вероятностей независимых событий, применение формулы сложения вероятностей. Решение задач с применением диаграмм Эйлера, дерева вероятностей, формулы Бернулли.

Условная вероятность. Правило умножения вероятностей. Формула полной вероятности.

Математическое ожидание и дисперсия случайной величины. Математическое ожидание и дисперсия суммы случайных величин. Геометрическое распределение. Биномиальное распределение и его свойства.

Непрерывные случайные величины. Понятие о плотности вероятности. Равномерное распределение.

Геометрия

Повторение. Решение задач на измерения на плоскости, вычисления длин и площадей. Решение задач с помощью векторов и координат. Пирамида. Виды пирамид. Элементы правильной пирамиды. Площади поверхностей многогранников..

Координаты и векторы. Векторы и координаты в пространстве. Сумма векторов, умножение вектора на число, угол между векторами. Коллинеарные и компланарные векторы. Скалярное произведение векторов. Теорема о разложении вектора по трем некомпланарным векторам. Скалярное произведение векторов в координатах. Применение векторов при решении задач на нахождение расстояний, длин, площадей и объемов.

Уравнение плоскости в пространстве. Уравнение сферы в пространстве. Формула для вычисления расстояния между точками в пространстве . Движения в пространстве: параллельный перенос, центральная симметрия, симметрия относительно плоскости, поворот. Свойства движений. Применение движений при решении задач.

Тела вращения: цилиндр, конус, сфера и шар. Основные свойства прямого кругового цилиндра, прямого кругового конуса. Изображение тел вращения на плоскости. Представление об усеченном конусе, сечения конуса (параллельное основанию и проходящее через вершину), сечения цилиндра (параллельно и перпендикулярно оси), сечения шара. Развертка цилиндра и конуса. Площадь поверхности правильной пирамиды и прямой призмы. Площадь поверхности прямого кругового цилиндра, прямого кругового конуса и шара.

Простейшие комбинации многогранников и тел вращения между собой. Вычисление элементов пространственных фигур (ребра, диагонали, углы).

Обьем: Понятие об объеме. Объем пирамиды и конуса, призмы и цилиндра. Объем шара. Подобные тела в пространстве. Соотношения между площадями поверхностей и объемами подобных тел. Объемы многогранников. Объемы тел вращения. Подобие в пространстве. Отношение объемов и площадей поверхностей подобных фигур.

Преобразование подобия, гомотетия. Решение задач на плоскости с использованием стереометрических методов.

Обобщение и систематизация курса алгебры и начал математического анализа и геометрии за 10-11 класс

Формула бинома Ньютона и треугольник Паскаля. Решение комбинаторных задач. Рациональные уравнения и неравенства. Степень положительного числа. Преобразования простейших выражений, включающих арифмети ческие операции, а также операцию возведения в степень. Преобразования тригонометрических, логарифмических, показательныхи и иррациональных выражений. Тригонометрические, логарифмические, показательные и иррацио нальные уравнения и неравенства.

Параллельность прямых и плоскостей. Перпендикулярность прямых и плоскостей. Многогранники. Векторы в пространстве. Решение задач из ЕГЭ (геометрия)





3. Тематическое планирование учебного предмета «Математика: алгебра и начала математического анализа, геометрия»

(базовый уровень)

Тематическое планирование для 10-11 классов составлено с учетом рабочей программы воспитания. Воспитательный потенциал данного учебного предмета обеспечивает реализацию следующих целевых приоритетов воспитания обучающихся ООО:

Развитие ценностного отношения:

- к семье как главной опоре в жизни человека и источнику его счастья;

- к труду как основному способу достижения жизненного благополучия человека, залогу его успешного профессионального самоопределения и ощущения уверенности в завтрашнем дне;

- к своему отечеству, своей малой и большой Родине как месту, в котором человек вырос и познал первые радости и неудачи, которая завещана ему предками и которую нужно оберегать;

- к самим себе как хозяевам своей судьбы, самоопределяющимся и самореализующимся личностям, отвечающим за свое собственное будущее.

- к ценностям иных культур, их традициям и обычаям;

- к природе как источнику жизни на Земле, основе самого ее существования, нуждающейся в защите и постоянном внимании со стороны человека;

- к миру как главному принципу человеческого общежития, условию крепкой дружбы, налаживания отношений с коллегами по работе в будущем и создания благоприятного микроклимата в своей собственной семье;

- к знаниям как интеллектуальному ресурсу, обеспечивающему будущее человека, как результату кропотливого, но увлекательного учебного труда;

- к культуре как духовному богатству общества и важному условию ощущения человеком полноты проживаемой жизни, которое дают ему чтение, музыка, искусство, театр, творческое самовыражение;

- к здоровью как залогу долгой и активной жизни человека, его хорошего настроения и оптимистичного взгляда на мир;

- к окружающим людям как безусловной и абсолютной ценности, как равноправным социальным партнерам, с которыми необходимо выстраивать доброжелательные и взаимоподдерживающие отношения, дающие человеку радость общения и позволяющие избегать чувства одиночества.


10 класс

Название раздела, темы

Общее количество часов

Контрольные работы

  1. Алгебра и начала анализа

86 ч


    1. Повторение материала 7-9 кл. ( действительные числа)

3


    1. Алгебра. Числовые функции

8

1

    1. Тригонометрические функции

18

1

    1. Тригонометрические уравнения

7

1

    1. Преобразования тригонометрических выражений

16

1

    1. Производная. Начала математического анализа

23

2

    1. Элементы комбинаторики, статистики и теории вероятностей

5

1

1.8 Итоговое повторение

6

1

  1. Геометрия

50 ч


2.1 Введение. Предмет стереометрии

4


2.2 Параллельность прямых

8

1

2.3 Параллельность плоскостей

6

1

2.4 Перпендикулярность прямых и плоскостей

12

1

2.5 Многогранники

8

1

2.6 Векторы в пространстве

5

1

2.7 Итоговое повторение

7


Итого

136 ч

13


11 класс

Название раздела, темы

Общее количество часов

Контрольные работы

  1. Алгебра и начала анализа

78 ч


    1. Степени и корни. Степенные функции

15

1

    1. Показательная и логарифмическая функции

24

3

    1. Первообразная и интеграл

9

1

    1. Элементы теории вероятностей и математической статистики

6

1

    1. Уравнения и неравенства. Системы уравнений и неравенств

16

2

    1. Предэкзаменационная работа

3

1

1.8 Обобщающее повторение

5




  1. Геометрия

58


2.1 Метод координат в пространстве

15

2

2.2 Цилиндр, конус, шар

16

1

2.3 Объемы тел

22

2

2.4 Обобщающее повторение

5




Итого 11 класс:

136 ч

13





















1 Здесь и далее: распознавать конкретные примеры общих понятий по характерным признакам, выполнять действия в соответствии с определением и простейшими свойствами понятий, конкретизировать примерами общие понятия.

2 Здесь и далее; знать определение понятия, уметь пояснять его смысл, уметь использовать понятие и его свойства при проведении рассуждений, решении задач.


Получите в подарок сайт учителя

Предмет: Математика

Категория: Планирование

Целевая аудитория: 10 класс

Скачать
Рабочая программа по математике для 10-11 класса базового уровня

Автор: Ахмадиева Рузалия Мидхатовна

Дата: 04.10.2022

Номер свидетельства: 614350

Похожие файлы

object(ArrayObject)#861 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(122) "Рабочая программа учителя начальных классов: требования ФГОС НОО. "
    ["seo_title"] => string(73) "rabochaia-proghramma-uchitielia-nachal-nykh-klassov-triebovaniia-fgos-noo"
    ["file_id"] => string(6) "143186"
    ["category_seo"] => string(16) "nachalniyeKlassi"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1418471702"
  }
}
object(ArrayObject)#883 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(80) "Рабочая программа по геометрии 10 класс ФГОС"
    ["seo_title"] => string(50) "rabochaia_proghramma_po_ghieomietrii_10_klass_fgos"
    ["file_id"] => string(6) "427136"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1504432378"
  }
}
object(ArrayObject)#861 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(67) "Рабочая программа.Математика 8 класс"
    ["seo_title"] => string(40) "rabochaia_proghramma_matiematika_8_klass"
    ["file_id"] => string(6) "358073"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1478948492"
  }
}
object(ArrayObject)#883 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(131) "Рабочая программа по алгебре и началам математического анализа 10 класс"
    ["seo_title"] => string(80) "rabochaia_proghramma_po_alghiebrie_i_nachalam_matiematichieskogho_analiza_10_kla"
    ["file_id"] => string(6) "427135"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(7) "prochee"
    ["date"] => string(10) "1504432030"
  }
}
object(ArrayObject)#861 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(165) "Рабочая программа по математике 8 класс (базовый уровень) УМК С.М. Никольский, Л.С. Атанасян "
    ["seo_title"] => string(93) "rabochaia-proghramma-po-matiematikie-8-klass-bazovyi-urovien-umk-s-m-nikol-skii-l-s-atanasian"
    ["file_id"] => string(6) "100418"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1402380067"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства