kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Наглядно-опорный конспект на тему «Приведение дробей к общему знаменателю»

Нажмите, чтобы узнать подробности

Число, на которое надо умножить знаменатель дроби, чтобы получить новый знаменатель, называют дополнительным множителем.
При приведении дроби к новому знаменателю ее числитель и знаменатель умножают на дополнительный множитель. 

Любые две дроби можно привести к одному и тому же знаменателю, или иначе к общему знаменателю.
Например,

Общим знаменателем дробей может быть любое общее кратное их знаменателей (например, произведение знаменателей).
Обычно дроби приводят к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей данных дробей.

Чтобы привести дроби к наименьшему общему знаменателю, надо:
1) найти наименьшее общее кратное знаменателей этих дробей, оно и будет их наименьшим общим знаменателем;
2) разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель;
3) умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Наглядно-опорный конспект на тему «Приведение дробей к общему знаменателю»»

Приведение дробей к общему знаменателю

Приведение дробей к общему знаменателю

Умножим числитель и знаменатель дроби  на одно и то же число 2. Получим равную ей дробь , т. е.    Говорят, что мы привели дробь  к новому знаменателю 8.  Дробь можно привести к любому знаменателю , кратному знаменателю данной дроби.

Умножим числитель и знаменатель дроби на одно и то же число 2. Получим равную ей дробь , т. е. Говорят, что мы привели дробь к новому знаменателю 8. Дробь можно привести к любому знаменателю , кратному знаменателю данной дроби.

Число, на которое надо умножить знаменатель дроби, чтобы получить новый знаменатель, называют дополнительным множителем.   При приведении дроби к новому знаменателю ее числитель и знаменатель умножают на дополнительный множитель.

Число, на которое надо умножить знаменатель дроби, чтобы получить новый знаменатель, называют дополнительным множителем. При приведении дроби к новому знаменателю ее числитель и знаменатель умножают на дополнительный множитель.

Пример 1 . Приведем дробь  к знаменателю 35.  Решение. Число 35 кратно 7, так как 35:7 = 5. Дополнительным множителем является число 5. Умножим числитель и знаменатель данной десятичные дроби на 5, получим

Пример 1 . Приведем дробь к знаменателю 35. Решение. Число 35 кратно 7, так как 35:7 = 5. Дополнительным множителем является число 5. Умножим числитель и знаменатель данной десятичные дроби на 5, получим

Любые две дроби можно привести к одному и тому же знаменателю, или иначе к общему знаменателю.  Например,   Общим знаменателем дробей может быть любое общее кратное их знаменателей (например, произведение знаменателей).  Обычно дроби приводят к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей данных дробей.

Любые две дроби можно привести к одному и тому же знаменателю, или иначе к общему знаменателю. Например, Общим знаменателем дробей может быть любое общее кратное их знаменателей (например, произведение знаменателей). Обычно дроби приводят к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей данных дробей.

Пример 2. Приведем к наименьшему общему знаменателю дроби  Решение. Наименьшим общим кратным чисел 4 и 6 является 12.   Чтобы привести дробь к знаменателю 12, надо умножить числитель и знаменатель этой дроби на дополнительный  множитель 3 (12:4 = 3). Получим 

Пример 2. Приведем к наименьшему общему знаменателю дроби Решение. Наименьшим общим кратным чисел 4 и 6 является 12. Чтобы привести дробь к знаменателю 12, надо умножить числитель и знаменатель этой дроби на дополнительный множитель 3 (12:4 = 3). Получим 

Чтобы привести дробь  к знаменателю 12, надо числитель и знаменатель этой дроби умножить на дополнительный множитель   2 (12:6=2).  Получим   Итак

Чтобы привести дробь  к знаменателю 12, надо числитель и знаменатель этой дроби умножить на дополнительный множитель   2 (12:6=2). Получим  Итак

Чтобы привести дроби к наименьшему общему знаменателю, надо:   1) найти наименьшее общее кратное знаменателей этих дробей, оно и будет их наименьшим общим знаменателем;   2) разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель;   3) умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.

Чтобы привести дроби к наименьшему общему знаменателю, надо: 1) найти наименьшее общее кратное знаменателей этих дробей, оно и будет их наименьшим общим знаменателем; 2) разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель; 3) умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.

В более сложных случаях наименьший общий знаменатель и дополнительные множители находят с помощью разложения на простые множители.  Пример 3. Приведем дроби к наименьшему общему знаменателю.  Решение. Разложим знаменатели данных дробей на простые множители:  60=2 • 2 • 3 • 5; 168 = 2 • 2 • 2 • 3 • 7.  Найдем наименьший общий знаменатель:  2 • 2  • 2 • 3 • 5 • 7 = 840.  Дополнительным множителем для дроби  является произведение 2 • 7, т. е. тех множителей, которые надо добавить к разложению числа 60, чтобы получить разложение общего знаменателя 840.

В более сложных случаях наименьший общий знаменатель и дополнительные множители находят с помощью разложения на простые множители. Пример 3. Приведем дроби к наименьшему общему знаменателю. Решение. Разложим знаменатели данных дробей на простые множители: 60=2 • 2 • 3 • 5; 168 = 2 • 2 • 2 • 3 • 7. Найдем наименьший общий знаменатель: 2 • 2  • 2 • 3 • 5 • 7 = 840. Дополнительным множителем для дроби  является произведение 2 • 7, т. е. тех множителей, которые надо добавить к разложению числа 60, чтобы получить разложение общего знаменателя 840.

Поэтому

Поэтому

Решение задач  264. Приведите дробь:     265. Выразите в минутах, а потом в шестидесятых долях часа: 266. Сколько содержится:

Решение задач 264. Приведите дробь:

265. Выразите в минутах, а потом в шестидесятых долях часа:

266. Сколько содержится:

267.    Сократите дроби а потом приведите их к знаменателю 24.  268. Можно ли привести к знаменателю 36 дроби: 272.    Приведите к наименьшему общему знаменателю дроби:

267.    Сократите дроби а потом приведите их к знаменателю 24.

268. Можно ли привести к знаменателю 36 дроби:

272.    Приведите к наименьшему общему знаменателю дроби:

Ответьте на вопросы:  1. Какое число называют дополнительным множителем?  2. Как найти дополнительный множитель?  3. Какое число может служить общим знаменателем двух дробей?  4. Как привести дроби к наименьшему общему знаменателю?

Ответьте на вопросы: 1. Какое число называют дополнительным множителем? 2. Как найти дополнительный множитель? 3. Какое число может служить общим знаменателем двух дробей? 4. Как привести дроби к наименьшему общему знаменателю?

Спасибо за внимание!

Спасибо за внимание!


Получите в подарок сайт учителя

Предмет: Математика

Категория: Презентации

Целевая аудитория: 5 класс

Скачать
Наглядно-опорный конспект на тему «Приведение дробей к общему знаменателю»

Автор: Тайлакова Алтынай Рамазановна

Дата: 31.10.2015

Номер свидетельства: 246032


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1390 руб.
1980 руб.
1850 руб.
2640 руб.
1650 руб.
2350 руб.
1450 руб.
2070 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства