kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Презентация "Софизмы"

Нажмите, чтобы узнать подробности

Понятие софизма

Софизм - (от греческого sophisma – уловка, ухищрение, выдумка, головоломка), умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям.

Из истории софизмов

Софистами называли группу древнегреческих философов 4-5 века до н.э., достигших большого искусства в логике. В период падения нравов древнегреческого общества (5 век) появляются так называемые учителя красноречия, которые целью своей деятельности считали и называли приобретение и распространения мудрости, вследствие чего они именовали себя софистами.

Типичные ошибки при решении софизмов

Запрещенные действия;

пренебрежение условиями теорем; формул и правил;

 ошибочный чертеж;

 опора на ошибочные умозаключения.

Алгебраические софизмы

Сумма любых двух одинаковых чисел равна нулю.

Возьмем произвольное не равное нулю число а и напишем уравнение х = а. Умножая обе его части на (-4а), получим -4ах = -4а2. Прибавляя к обеим частям последнего равенст­ва х2 и перенеся член -4а2 влево с противоположным зна­ком, получим х2-4ах + 4a2 = х2, откуда, замечая, что слева стоит полный квадрат, имеем

(х-2а)2 = х2,  х-2а = х. Заменяя в последнем равенстве х на равное ему число а, по­лучим а-2а = а, или -а = а, откуда 0 = a + a,      т. е. сумма двух произвольных одинаковых чисел а равна 0.

Геометрический софизм

« Спичка вдвое длиннее телеграфного столба»

 Пусть  а дм- длина спички и b дм - длина столба. Разность между b и  a  обозначим через c.

Имеем 
b - a = c, b = a + c.
Перемножаем два эти равенства по частям, находим:
b2 - ab = ca + c2.
Вычтем из обеих частей bc. Получим:
b2- ab - bc = ca + c2 - bc, или b(b - a - c) = - c(b - a - c),
откуда:
b = - c, но c = b - a,
поэтому b = a - b, или a = 2b.

Тригонометрический софизм

Бесконечное большое число равно нулю

Если острый угол увеличивается. Приближаясь к 900  как к пределу, то его тангенс, как известно, неограниченно растёт по абсолютной величине, оставаясь положительным: tg900 = +∞.

Но если взять тупой угол и уменьшить его, приближая к 900  как к пределу, то его тангенс, оставаясь отрицательным, также неограниченно растёт по абсолютной величине: tg900 = - ∞.

Сопоставим формулы (1) и (2): - ∞ = +∞

     +∞ +∞ = 0

     ∞ = 0

Современные софизмы

«Одна и та же вещь не может иметь какое-то свойство и не иметь его. Хозрасчет предполагает самостоятельность, заинтересованность и ответственность. Заинтересованность — это, очевидно, не ответственность, а ответственность — не самостоятельность. Получается вопреки сказанному вначале, что хозрасчет включает самостоятельность и несамостоятельность, ответственность и безответственность».

«Акционерное общество, получившее когда-то ссуду от государства, те-перь ему уже не должно, так как оно стало иным: в его правлении не осталось никого из тех, кто просил ссуду».

"Предмет математики настолько серьезен,что полезно не упускать случаев сделать его немного занимательным".            Б. Паскаль

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Презентация "Софизмы" »

СОФИЗМЫ Автор: учитель математики Ливадийского УВК Постернакова Ольга Глебовна

СОФИЗМЫ

Автор:

учитель математики

Ливадийского УВК

Постернакова Ольга Глебовна

ПОНЯТИЕ СОФИЗМА  Софизм - (от греческого sophisma – уловка, ухищрение, выдумка, головоломка), умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям.

ПОНЯТИЕ СОФИЗМА

Софизм - (от греческого sophisma – уловка, ухищрение, выдумка, головоломка), умозаключение или рассуждение, обосновывающее какую-нибудь заведомую нелепость, абсурд или парадоксальное утверждение, противоречащее общепринятым представлениям.

ИЗ ИСТОРИИ СОФИЗМОВ

ИЗ ИСТОРИИ СОФИЗМОВ

  • Софистами называли группу древнегреческих философов 4-5 века до н.э., достигших большого искусства в логике. В период падения нравов древнегреческого общества (5 век) появляются так называемые учителя красноречия, которые целью своей деятельности считали и называли приобретение и распространения мудрости, вследствие чего они именовали себя софистами.
ИЗ ИСТОРИИ СОФИЗМОВ

ИЗ ИСТОРИИ СОФИЗМОВ

  • Наиболее известна деятельность старших софистов, к которым относят Протагора из Абдеры, Горгия из Леонтип, Гиппия из Элиды и Продика из Кеоса.
ИЗ ИСТОРИИ СОФИЗМОВ

ИЗ ИСТОРИИ СОФИЗМОВ

  • Известнейший ученый и философ Сократ по началу был софистом, активно участвовал в спорах и обсуждениях софистов, но вскоре стал критиковать учение софистов и софистику в целом. Философия Сократа была основана на том, что мудрость приобретается с общением, в процессе беседы.
ТИПИЧНЫЕ ОШИБКИ ПРИ РЕШЕНИИ СОФИЗМОВ

ТИПИЧНЫЕ ОШИБКИ ПРИ РЕШЕНИИ СОФИЗМОВ

  • Запрещенные действия;
  • пренебрежение условиями теорем; формул и правил;
  • ошибочный чертеж;
  • опора на ошибочные умозаключения.
ФОРМУЛА УСПЕШНОСТИ СОФИЗМА Успешность софизма определяется следующей формулой:  a + b + c + d + e + f ,  где (a + с + е) составляет показатель силы диалектика, (b + d + f) есть показатель слабости его жертвы.  

ФОРМУЛА УСПЕШНОСТИ СОФИЗМА

  • Успешность софизма определяется следующей формулой:

a + b + c + d + e + f ,

где (a + с + е) составляет показатель силы диалектика, (b + d + f) есть показатель слабости его жертвы.  

  • а - отрицательные качества лица (отсутствие развития способности управлять вниманием). b - положительные качества лица (способность активно мыслить) с - аффективный элемент в душе искусного диалектика d - качества, которые пробуждаются в душе жертвы софиста и омрачают в ней ясность мышления е - категоричность тона, не допускающего возражения, определённая мимика f - пассивность слушателя
  • а - отрицательные качества лица (отсутствие развития способности управлять вниманием).
  • b - положительные качества лица (способность активно мыслить)
  • с - аффективный элемент в душе искусного диалектика
  • d - качества, которые пробуждаются в душе жертвы софиста и омрачают в ней ясность мышления
  • е - категоричность тона, не допускающего возражения, определённая мимика
  • f - пассивность слушателя
Алгебраические софизмы

Алгебраические софизмы

  • Сумма любых двух одинаковых чисел равна нулю.
  • Возьмем произвольное не равное нулю число а и напишем уравнение х = а. Умножая обе его части на (-4а), получим -4ах = -4а 2 . Прибавляя к обеим частям последнего равенст­ва х 2 и перенеся член -4а 2 влево с противоположным зна­ком, получим х 2 -4ах + 4a 2 = х 2 , откуда, замечая, что слева стоит полный квадрат, имеем
  • (х-2а) 2 = х 2 , х-2а = х.
  • Заменяя в последнем равенстве х на равное ему число а, по­лучим а-2а = а, или -а = а, откуда 0 = a + a,
  • т. е. сумма двух произвольных одинаковых чисел а равна 0.
Алгебраические софизмы

Алгебраические софизмы

  • Все числа равны между собой
  • Докажем, что 5=6.
  • Запишем равенство:
  • 35+10-45=42+12-54
  • Вынесем за скобку общие
  • множители: 5∙(7+2-9)=6∙(7+2-9).
  • Разделим обе части этого равенства на
  • общий множитель (он заключен в скобки):
  • 5∙(7+2-9)=6∙(7+2-9).
  • Значит, 5=6 .
Алгебраические софизмы

Алгебраические софизмы

  • «Дважды два равно пяти».
  • Обозначим 4=а, 5=b, (a+b)/2=d. Имеем: a+b=2d, a=2d-b, 2d-a=b. перемножим два последних равенства по частям. Получим: 2da-a*a=2db-b*b. Умножим обе части получившегося равенства на –1 и прибавим к результатам d*d. Будем иметь: a 2-2da+d2=b2 -2bd+d2, или (a-d)(a-d)=(b-d)(b-d), откуда a-d=b-d и a=b, т.е. 2*2=5
ГЕОМЕТРИЧЕСКИЙ СОФИЗМ

ГЕОМЕТРИЧЕСКИЙ СОФИЗМ

  • « Спичка вдвое длиннее телеграфного столба»
  •   Пусть  а дм - длина спички и b дм - длина столба. Разность между b и  a  обозначим через c .
  • Имеем  b - a = c, b = a + c. Перемножаем два эти равенства по частям, находим: b 2 - ab = ca + c 2 . Вычтем из обеих частей bc. Получим: b 2 - ab - bc = ca + c 2 - bc, или b(b - a - c) = - c(b - a - c), откуда: b = - c, но c = b - a, поэтому b = a - b, или a = 2b.
ТРИГОНОМЕТРИЧЕСКИЙ СОФИЗ м Бесконечное большое число равно нулю Если острый угол увеличивается. Приближаясь к 900 как к пределу, то его тангенс, как известно, неограниченно растёт по абсолютной величине, оставаясь положительным: tg90 0 = +∞. Но если взять тупой угол и уменьшить его, приближая к 900 как к пределу, то его тангенс, оставаясь отрицательным, также неограниченно растёт по абсолютной величине: tg90 0 = - ∞. Сопоставим формулы (1) и (2): - ∞ = +∞  +∞ +∞ = 0 ∞ = 0

ТРИГОНОМЕТРИЧЕСКИЙ СОФИЗ м

  • Бесконечное большое число равно нулю
  • Если острый угол увеличивается. Приближаясь к 900 как к пределу, то его тангенс, как известно, неограниченно растёт по абсолютной величине, оставаясь положительным: tg90 0 = +∞.
  • Но если взять тупой угол и уменьшить его, приближая к 900 как к пределу, то его тангенс, оставаясь отрицательным, также неограниченно растёт по абсолютной величине: tg90 0 = - ∞.
  • Сопоставим формулы (1) и (2): - ∞ = +∞

+∞ +∞ = 0

∞ = 0

ИСТОРИЧЕСКИЕ СОФИЗМЫ

ИСТОРИЧЕСКИЕ СОФИЗМЫ

  • «Самое быстрое существо не способно догнать самое медленное»
  • Быстроногий Ахиллес никогда не настигнет медлительную черепаху. Пока Ахиллес добежит до черепахи, она продвинется немного вперед. Он быстро преодолеет и это расстояние, но черепаха уйдет еще чуточку вперед. И так до бесконечности. Всякий раз, когда Ахиллес будет достигать места, где была перед этим черепаха, она будет оказываться хотя бы немного, но впереди.
ИСТОРИЧЕСКИЕ СОФИЗМЫ

ИСТОРИЧЕСКИЕ СОФИЗМЫ

  • «Софизм Кратила»
  • Диалектик Гераклит, провозгласив тезис "все течет", пояснял, что в одну и ту же реку (образ природы) нельзя войти дважды, ибо когда входящий будет входить в следующий раз, на него будет течь уже другая вода. Его ученик Кратил, сделал из утверждения учителя другие выводы: в одну и ту же реку нельзя войти даже один раз, ибо пока ты входишь, она уже изменится.
СОФИЗМЫ ИЗ ДРЕВНЕЙ ГРЕЦИИ

СОФИЗМЫ ИЗ ДРЕВНЕЙ ГРЕЦИИ

  • «Сидящий встал; кто встал, тот стоит; следовательно, сидящий стоит».
  • «Сократ - человек; человек - не то же самое, что Сократ; значит, Сократ - это нечто иное, чем Сократ».
  • «Для того чтобы видеть, вовсе необязательно иметь глаза, ведь без правого глаза мы видим, без левого тоже видим; кроме правого и левого, других глаз у нас нет; поэтому ясно, что глаза не являются необходимыми для зрения».
  • «Тот, кто лжет, говорит о деле, о котором идет речь, или не говорит о нем; если он говорит о деле, он не лжет; если он не говорит о деле, он говорит о чем-то несуществующем, а о нем невозможно не только лгать, но даже мыслить и говорить».
СОВРЕМЕННЫЕ СОФИЗМЫ

СОВРЕМЕННЫЕ СОФИЗМЫ

  • «Одна и та же вещь не может иметь какое-то свойство и не иметь его. Хозрасчет предполагает самостоятельность, заинтересованность и ответственность. Заинтересованность — это, очевидно, не ответственность, а ответственность — не самостоятельность. Получается вопреки сказанному вначале, что хозрасчет включает самостоятельность и несамостоятельность, ответственность и безответственность».
  • «Акционерное общество, получившее когда-то ссуду от государства, те-перь ему уже не должно, так как оно стало иным: в его правлении не осталось никого из тех, кто просил ссуду».
  • "Предмет математики настолько серьезен,что полезно не упускать случаев сделать его немного занимательным".
  • Б. Паскаль


Получите в подарок сайт учителя

Предмет: Математика

Категория: Презентации

Целевая аудитория: Прочее.
Урок соответствует ФГОС

Скачать
Презентация "Софизмы"

Автор: Постернакова Ольга Глебовна

Дата: 28.02.2015

Номер свидетельства: 179892

Похожие файлы

object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(102) "Занятие факультатива по теме «Математические софизмы» "
    ["seo_title"] => string(59) "zaniatiie-fakul-tativa-po-tiemie-matiematichieskiie-sofizmy"
    ["file_id"] => string(6) "231925"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(12) "meropriyatia"
    ["date"] => string(10) "1442676507"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(99) "Презентация по теме:"Сложение чисел с разными знаками""
    ["seo_title"] => string(56) "priezientatsiiapotiemieslozhieniiechisielsraznymiznakami"
    ["file_id"] => string(6) "312087"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1459284301"
  }
}
object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(82) "Решение задач составлением уравнений 5класс "
    ["seo_title"] => string(51) "rieshieniie-zadach-sostavlieniiem-uravnienii-5klass"
    ["file_id"] => string(6) "152105"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1420806059"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(77) "«Неделя математики, физики, информатики». "
    ["seo_title"] => string(40) "niedielia-matiematiki-fiziki-informatiki"
    ["file_id"] => string(6) "184942"
    ["category_seo"] => string(11) "informatika"
    ["subcategory_seo"] => string(12) "meropriyatia"
    ["date"] => string(10) "1426129389"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства