kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Свойства степени с натуральным показателем 7 класс

Нажмите, чтобы узнать подробности

Формы работы: индивидуальная, фронтальная, парная.

Продолжительность урока: 45 минут.

Методы обучения: словесный, наглядный, практический, проблемный.

Оборудование: наглядная презентация учебного материала (Приложение 1); карточки красного и зеленого цвета для игры «Молчанка», карточка с дифференцированными заданиями «Пара чисел», карточка с копиркой, плакат « Угадай фамилию ученого математика», карточки с формулами свойств степени (при отсутствии презентации), зачетный  лист.

Цели урока:

  • Общеобразовательные:
    • обеспечить повторение, обобщение и систематизацию знаний по теме;
    • создать условия контроля (взаимоконтроля)  усвоения знаний и умений;
  • Развивающие:
    • способствовать формированию умений применять приемы обобщения, сравнения, выделения главного, переноса знаний в новую ситуацию;
    • развитие математического кругозора, мышления, речи, внимания и памяти.
  • Воспитательные:
    • содействовать воспитанию интереса к математике, активности, организованности; воспитывать умение взаимо- и самоконтроля своей деятельности;
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Свойства степени с натуральным показателем 7 класс »

1 свойство При умножении разных степеней с одинаковыми основаниями основание степеней оставляется прежним, а показатели складываются: a m      a n  =  a m  +  n .

1 свойство

При умножении разных степеней с одинаковыми основаниями основание степеней оставляется

прежним, а показатели складываются:

a m      a n  =  a m  +  n .

a 3      a 4  = a ⋅ a ⋅ a ⏟ 3 раза size 12{ { size 11{a cdot a cdot a}} underbrace { size 8{3``"раза"} } } {} VkNMTVRGAQAxAAAAAAAAAAEAGwAAAAAAAAAAAAAAAAABAAAAAQAAAAEAAAABAAAAAX4EAAD/ AwAAQAAAAJYAAQACAAAACQCLAAEAAgAAAP//gQABABAAAAAAAAAAAAAAAH0EAAD+AwAAlQAB AAQAAAAAAAAAlgABAAIAAAAJAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJv bWFuIE5vOSBMAAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAAB AAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAGoAAACNAQAAAQBhwQAA AAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wA AAAAAACDAQAA//8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwAB AAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAaAAAACQEAAI0BAAABAAAAxSLfAAAAAAD//wEA xSKMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBM AAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcA AQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAMIBAACNAQAAAQBhwQAAAAAA//8BAGEA jAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACDAQAA //8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD///// AIYAAQAEAAAAAAAAAHIAAgAaAAAAYQIAAI0BAAABAAAAxSLfAAAAAAD//wEAxSKMAAEAAAAA AIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAAgwEA AAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA//// /wCGAAEABAAAAAAAAAByAAIAFwAAABoDAACNAQAAAQBhwQAAAAAA//8BAGEAjAABAAAAAACL AAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAADIDAAB5AgAA//8AAAAABQAA AAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAA AAAAAHIAAgAaAAAAhAAAAPcBAAABAAAA3yNjAwAAAAD//wEA3yOMAAEAAAAAAIsAAQACAAAA HwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAAGQEAAAAAAwAAAAUA AAAAAAAA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAA AAAAAAByAAIAFwAAAJ8AAAC5AwAAAQAzjQAAAAAA//8BADMAjAABAAAAAACLAAEAAgAAAB8A igABAEQAAAADAD4AAAASAE5pbWJ1cyBSb21hbiBObzkgTAAAAAAAABkBAAAAAAMAAAAFAAAA AAAAAP8DAAAAAAAAAAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAA AAAAcgACACQAAACnAQAAuQMAAAgA0YDQsNC30LDsAQAAAAD//wQAQAQwBDcEMASMAAEAAAAA AJUAAQAEAAAAAAAAAJYAAQACAAAACQCMAAEAAAAAAA==  a ⋅ a ⋅ a ⋅ a ⏟ 4 раза size 12{ { size 11{a cdot a cdot a cdot a}} underbrace { size 8{4``"раза"} } } {} VkNMTVRGAQAxAAAAAAAAAAEAGwAAAAAAAAAAAAAAAAABAAAAAQAAAAEAAAABAAAAAdIFAAD/ AwAATgAAAJYAAQACAAAACQCLAAEAAgAAAP//gQABABAAAAAAAAAAAAAAANEFAAD+AwAAlQAB AAQAAAAAAAAAlgABAAIAAAAJAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJv bWFuIE5vOSBMAAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAAB AAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAGoAAACNAQAAAQBhwQAA AAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wA AAAAAACDAQAA//8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwAB AAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAaAAAACQEAAI0BAAABAAAAxSLfAAAAAAD//wEA xSKMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBM AAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcA AQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAMIBAACNAQAAAQBhwQAAAAAA//8BAGEA jAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACDAQAA //8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD///// AIYAAQAEAAAAAAAAAHIAAgAaAAAAYQIAAI0BAAABAAAAxSLfAAAAAAD//wEAxSKMAAEAAAAA AIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAAgwEA AAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA//// /wCGAAEABAAAAAAAAAByAAIAFwAAABoDAACNAQAAAQBhwQAAAAAA//8BAGEAjAABAAAAAACL AAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACDAQAA//8AAAAABQAA AAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAA AAAAAHIAAgAaAAAAuQMAAI0BAAABAAAAxSLfAAAAAAD//wEAxSKMAAEAAAAAAIsAAQACAAAA HwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAAgwEAAAAAAwAAAAUA AAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAA AAAAAAByAAIAFwAAAHIEAACNAQAAAQBhwQAAAAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8A igABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAHwEAAB5AgAA//8AAAAABQAAAAAAAAD/AwAA AAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAa AAAAagAAAPcBAAABAAAA3yPBBAAAAAD//wEA3yOMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAA AAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAAGQEAAAAAAwAAAAUAAAAAAAAA/wMA AAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIA FwAAAFgBAAC5AwAAAQA0jQAAAAAA//8BADQAjAABAAAAAACLAAEAAgAAAB8AigABAEQAAAAD AD4AAAASAE5pbWJ1cyBSb21hbiBObzkgTAAAAAAAABkBAAAAAAMAAAAFAAAAAAAAAP8DAAAA AAAAAAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACACQA AABhAgAAuQMAAAgA0YDQsNC30LDsAQAAAAD//wQAQAQwBDcEMASMAAEAAAAAAJUAAQAEAAAA AAAAAJYAAQACAAAACQCMAAEAAAAAAA== = a ⋅ a ⋅ . . . ⋅ a ⏟ 3 + 4 = 7 раз size 12{ { size 11{a cdot a cdot "." "." "." cdot a}} underbrace { size 8{3`+`4`=`7``"раз"} } } {} VkNMTVRGAQAxAAAAAAAAAAEAGwAAAAAAAAAAAAAAAAABAAAAAQAAAAEAAAABAAAAATgHAAAD BAAAeAAAAJYAAQACAAAACQCLAAEAAgAAAP//gQABABAAAAAAAAAAAAAAADcHAAACBAAAlQAB AAQAAAAAAAAAlgABAAIAAAAJAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJv bWFuIE5vOSBMAAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAAB AAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAANQAAACNAQAAAQBhwQAA AAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wA AAAAAACDAQAA//8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwAB AAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAaAAAAcgEAAI0BAAABAAAAxSLfAAAAAAD//wEA xSKMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBM AAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcA AQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAACwCAACNAQAAAQBhwQAAAAAA//8BAGEA jAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACDAQAA //8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD///// AIYAAQAEAAAAAAAAAHIAAgAaAAAAygIAAI0BAAABAAAAxSLfAAAAAAD//wEAxSKMAAEAAAAA AIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAAgwEA AAAAAwAAAAUAAAAAAAAA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA//// /wCGAAEABAAAAAAAAAByAAIAFwAAAIQDAACNAQAAAQAuYQAAAAAA//8BAC4AjAABAAAAAACL AAEAAgAAAB8AigABAEQAAAADAD4AAAASAE5pbWJ1cyBSb21hbiBObzkgTAAAAAAAAIMBAAAA AAMAAAAFAAAAAAAAAP8DAAAAAAAAAAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8A hgABAAQAAAAAAAAAcgACABcAAAAIBAAAjQEAAAEALmEAAAAAAP//AQAuAIwAAQAAAAAAiwAB AAIAAAAfAIoAAQBEAAAAAwA+AAAAEgBOaW1idXMgUm9tYW4gTm85IEwAAAAAAACDAQAAAAAD AAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYA AQAEAAAAAAAAAHIAAgAXAAAAjAQAAI0BAAABAC5hAAAAAAD//wEALgCMAAEAAAAAAIsAAQAC AAAAHwCKAAEAPAAAAAMANgAAAAoAT3BlblN5bWJvbAAAAAAAAIMBAAD//wAAAAAFAAAAAAAA AP8DAAAAAAAAAAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAA cgACABoAAADBBAAAjQEAAAEAAADFIt8AAAAAAP//AQDFIowAAQAAAAAAiwABAAIAAAAfAIoA AQBEAAAAAwA+AAAAEgBOaW1idXMgUm9tYW4gTm85IEwAAAAAAACDAQAAAAADAAAABQAAAAAA AgD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAA AHIAAgAXAAAAegUAAI0BAAABAGHBAAAAAAD//wEAYQCMAAEAAAAAAIsAAQACAAAAHwCKAAEA PAAAAAMANgAAAAoAT3BlblN5bWJvbAAADgUAAHkCAAD//wAAAAAFAAAAAAAAAP8DAAAAAAAA AAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACABoAAADU AAAA9wEAAAEAAADfI10FAAAAAP//AQDfI4wAAQAAAAAAiwABAAIAAAAfAIoAAQBEAAAAAwA+ AAAAEgBOaW1idXMgUm9tYW4gTm85IEwAAAAAAAAZAQAAAAADAAAABQAAAAAAAAD/AwAAAAAA AAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAXAAAA agAAALkDAAABADONAAAAAAD//wEAMwCMAAEAAAAAAIsAAQACAAAAHwCKAAEAPAAAAAMANgAA AAoAT3BlblN5bWJvbAAAAAAAABkBAAD//wAAAAAFAAAAAAAAAP8DAAAAAAAAAAAA/wMAAAAA AIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACABoAAAA+AQAAuQMAAAEA AAArAKQAAAAAAP//AQArAIwAAQAAAAAAiwABAAIAAAAfAIoAAQBEAAAAAwA+AAAAEgBOaW1i dXMgUm9tYW4gTm85IEwAAAAAAAAZAQAAAAADAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAA AACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAXAAAALAIAALkDAAAB ADSNAAAAAAD//wEANACMAAEAAAAAAIsAAQACAAAAHwCKAAEAPAAAAAMANgAAAAoAT3BlblN5 bWJvbAAAAAAAABkBAAD//wAAAAAFAAAAAAAAAP8DAAAAAAAAAAAA/wMAAAAAAIgAAQACAAAA AQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACABoAAAD/AgAAuQMAAAEAAAA9AN8AAAAA AP//AQA9AIwAAQAAAAAAiwABAAIAAAAfAIoAAQBEAAAAAwA+AAAAEgBOaW1idXMgUm9tYW4g Tm85IEwAAAAAAAAZAQAAAAADAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAA AAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAXAAAAIgQAALkDAAABADeNAAAAAAD/ /wEANwCMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5v OSBMAAAAAAAAGQEAAAAAAwAAAAUAAAAAAAAA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAAB AIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAIAAAACsFAAC5AwAABgDRgNCw0LdvAQAA AAD//wMAQAQwBDcEjAABAAAAAACVAAEABAAAAAAAAACWAAEAAgAAAAkAjAABAAAAAAA=

2 свойство

При умножении одинаковых степеней с разными основаниями эти основания перемножаются, а

показатель степени остается прежним:

a n      b n  = ( ab ) n .

a 3    b 3  =  a    a    a    b    b    b  = 

=( a    b  ( a    b  ( a    b ) = ( ab ) 3

m , a ≠ 0." width="640"

3 свойство

При делении степени на степень с тем же основанием основание остается прежним, а показатели вычитаются:

a n : a m = a n – m , n m , a ≠ 0.

a 5 a 3 = a ⋅ a ⋅ a ⋅ a ⋅ a a ⋅ a ⋅ a size 12{ { { size 11{a rSup { size 8{5} } }} over { size 12{a rSup { size 8{3} } } } } = { { size 12{a cdot a cdot a cdot a cdot a} } over { size 12{a cdot a cdot a} } } } {} VkNMTVRGAQAxAAAAAAAAAAEAGwAAAAAAAAAAAAAAAAABAAAAAQAAAAEAAAABAAAAATsLAACz BAAAnwAAAJYAAQACAAAACQCLAAEAAgAAAP//gQABABAAAAAAAAAAAAAAADoLAACyBAAAlQAB AAQAAAAAAAAAlgABAAIAAAAJAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJv bWFuIE5vOSBMAAAAAAAAgwEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAAB AAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAJ8AAADCAQAAAQBhwQAA AAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8AigABAEQAAAADAD4AAAASAE5pbWJ1cyBSb21h biBObzkgTAAAAAAAABkBAAAAAAMAAAAFAAAAAAAAAP8DAAAAAAAAAAAA/wMAAAAAAIgAAQAC AAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACABcAAAByAQAACQEAAAEANY0AAAAA AP//AQA1AIwAAQAAAAAAiwABAAIAAAAfAIUAAQAFAAAAAAAAAAGEAAEABQAAAAAAAAAAigAB ADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACmAQAA//8AAAAABQAAAAAAAAD/AwAAAAAA AAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAGcAAQAQAAAA hAAAAEYCAAAqAgAAWgIAAIwAAQAAAAAAiwABAAIAAAAfAIoAAQBEAAAAAwA+AAAAEgBOaW1i dXMgUm9tYW4gTm85IEwAAAAAAACmAQAAAAADAAAABQAAAAAAAgD/AwAAAAAAAAAAAP8DAAAA AACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAXAAAAnwAAAD0EAAAB AGHTAAAAAAD//wEAYQCMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVz IFJvbWFuIE5vOSBMAAAAAAAAGQEAAAAAAwAAAAUAAAAAAAAA/wMAAAAAAAAAAAD/AwAAAAAA iAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAHIBAABpAwAAAQAz jQAAAAAA//8BADMAjAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1i b2wAAAAAAACmAQAA//8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEA hwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAaAAAARgIAAMoCAAABAAAAPQBPAQAAAAD/ /wEAPQCMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5v OSBMAAAAAAAApgEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAAB AIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAANMDAADCAQAAAQBh0wAAAAAA//8B AGEAjAABAAAAAACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACm AQAA//8AAAAABQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/ ////AIYAAQAEAAAAAAAAAHIAAgAaAAAAcgQAAMIBAAABAAAAxSL0AAAAAAD//wEAxSKMAAEA AAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAA pgEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA /////wCGAAEABAAAAAAAAAByAAIAFwAAAEUFAADCAQAAAQBh0wAAAAAA//8BAGEAjAABAAAA AACLAAEAAgAAAB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACmAQAA//8AAAAA BQAAAAAAAAD/AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAE AAAAAAAAAHIAAgAaAAAA5AUAAMIBAAABAAAAxSL0AAAAAAD//wEAxSKMAAEAAAAAAIsAAQAC AAAAHwCKAAEARAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAApgEAAAAAAwAA AAUAAAAAAAIA/wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEA BAAAAAAAAAByAAIAFwAAALgGAADCAQAAAQBh0wAAAAAA//8BAGEAjAABAAAAAACLAAEAAgAA AB8AigABADwAAAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACmAQAA//8AAAAABQAAAAAAAAD/ AwAAAAAAAAAAAP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIA AgAaAAAAcQcAAMIBAAABAAAAxSL0AAAAAAD//wEAxSKMAAEAAAAAAIsAAQACAAAAHwCKAAEA RAAAAAMAPgAAABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAApgEAAAAAAwAAAAUAAAAAAAIA /wMAAAAAAAAAAAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAABy AAIAFwAAACoIAADCAQAAAQBh0wAAAAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8AigABADwA AAADADYAAAAKAE9wZW5TeW1ib2wAAAAAAACmAQAA//8AAAAABQAAAAAAAAD/AwAAAAAAAAAA AP8DAAAAAACIAAEAAgAAAAEAhwABAAUAAAD/////AIYAAQAEAAAAAAAAAHIAAgAaAAAA4wgA AMIBAAABAAAAxSL0AAAAAAD//wEAxSKMAAEAAAAAAIsAAQACAAAAHwCKAAEARAAAAAMAPgAA ABIATmltYnVzIFJvbWFuIE5vOSBMAAAAAAAApgEAAAAAAwAAAAUAAAAAAAIA/wMAAAAAAAAA AAD/AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAFwAAAJ0J AADCAQAAAQBh0wAAAAAA//8BAGEAjAABAAAAAACLAAEAAgAAAB8AhQABAAUAAAAAAAAAAYQA AQAFAAAAAAAAAACKAAEAPAAAAAMANgAAAAoAT3BlblN5bWJvbAAAAAAAAKYBAAD//wAAAAAF AAAAAAAAAP8DAAAAAAAAAAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQA AAAAAAAAZwABABAAAAC5AwAARgIAAKMKAABaAgAAjAABAAAAAACLAAEAAgAAAB8AigABAEQA AAADAD4AAAASAE5pbWJ1cyBSb21hbiBObzkgTAAAAAAAAKYBAAAAAAMAAAAFAAAAAAACAP8D AAAAAAAAAAAA/wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgAC ABcAAABFBQAA7QMAAAEAYdMAAAAAAP//AQBhAIwAAQAAAAAAiwABAAIAAAAfAIoAAQA8AAAA AwA2AAAACgBPcGVuU3ltYm9sAAAAAAAApgEAAP//AAAAAAUAAAAAAAAA/wMAAAAAAAAAAAD/ AwAAAAAAiAABAAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAGgAAAOQFAADt AwAAAQAAAMUi9AAAAAAA//8BAMUijAABAAAAAACLAAEAAgAAAB8AigABAEQAAAADAD4AAAAS AE5pbWJ1cyBSb21hbiBObzkgTAAAAAAAAKYBAAAAAAMAAAAFAAAAAAACAP8DAAAAAAAAAAAA /wMAAAAAAIgAAQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACABcAAAC4BgAA 7QMAAAEAYdMAAAAAAP//AQBhAIwAAQAAAAAAiwABAAIAAAAfAIoAAQA8AAAAAwA2AAAACgBP cGVuU3ltYm9sAAAAAAAApgEAAP//AAAAAAUAAAAAAAAA/wMAAAAAAAAAAAD/AwAAAAAAiAAB AAIAAAABAIcAAQAFAAAA/////wCGAAEABAAAAAAAAAByAAIAGgAAAHEHAADtAwAAAQAAAMUi 9AAAAAAA//8BAMUijAABAAAAAACLAAEAAgAAAB8AigABAEQAAAADAD4AAAASAE5pbWJ1cyBS b21hbiBObzkgTAAAAAAAAKYBAAAAAAMAAAAFAAAAAAACAP8DAAAAAAAAAAAA/wMAAAAAAIgA AQACAAAAAQCHAAEABQAAAP////8AhgABAAQAAAAAAAAAcgACABcAAAAqCAAA7QMAAAEAYdMA AAAAAP//AQBhAIwAAQAAAAAAlQABAAQAAAAAAAAAlgABAAIAAAAJAIwAAQAAAAAA =  a      a  =  a 2

4 свойство

При делении степеней с одинаковыми показателями

основания делятся друг на друга, а показатель степени остается прежним:

a n : b n = , n m , b ≠ 0 .

5 свойство   При возведении степени в степень основание степени остается прежним, а показатели степеней перемножаются: ( a m ) n  =  a m      n ( a 2 ) 3  =  a 2      a 2      a 2  =  a 2 + 2 + 2  =  a 6

5 свойство

При возведении степени в степень основание степени остается прежним, а показатели степеней перемножаются:

( a m ) n  =  a m      n

( a 2 ) 3  =  a 2      a 2      a 2  =  a 2 + 2 + 2  =  a 6


Получите в подарок сайт учителя

Предмет: Математика

Категория: Презентации

Целевая аудитория: 7 класс

Скачать
Свойства степени с натуральным показателем 7 класс

Автор: Титов Александр Владимирович

Дата: 25.02.2015

Номер свидетельства: 178640

Похожие файлы

object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(134) "Конспект урока математики «Свойства степени с натуральным показателем» "
    ["seo_title"] => string(74) "konspiekt-uroka-matiematiki-svoistva-stiepieni-s-natural-nym-pokazatieliem"
    ["file_id"] => string(6) "142210"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1418234697"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(122) "Презентация к открытому уроку "Степень с натуральным показателем"."
    ["seo_title"] => string(62) "priezientatsiiakotkrytomuurokustiepiensnaturalnympokazatieliem"
    ["file_id"] => string(6) "266136"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1450100362"
  }
}
object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(83) ""Свойства степени с натуральным показателем" "
    ["seo_title"] => string(48) "svoistva-stiepieni-s-natural-nym-pokazatieliem-2"
    ["file_id"] => string(6) "164982"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1422724052"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(141) "Урок алгебры в 7 классе по теме: "Свойства степени с натуральным показателем". "
    ["seo_title"] => string(83) "urok-alghiebry-v-7-klassie-po-tiemie-svoistva-stiepieni-s-natural-nym-pokazatieliem"
    ["file_id"] => string(6) "132242"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1416314210"
  }
}
object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(126) "Конспект урока алгебры "Свойства степени с натуральным показателем" "
    ["seo_title"] => string(72) "konspiekt-uroka-alghiebry-svoistva-stiepieni-s-natural-nym-pokazatieliem"
    ["file_id"] => string(6) "120584"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1413737579"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства