Мини – исследования на уроках математики в начальной школе
Мини – исследования на уроках математики в начальной школе
В статье говорится об одном из вариантов работы с детьми на примере золотого сечения, так как именно геометрия способствует воспитанию творческой личногсти, стимулированию у ребенка познавательной активности, развитию индивидуальных творческих задатков, формированию логического и научного мышления.
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Просмотр содержимого документа
«Мини – исследования на уроках математики в начальной школе»
Мини – исследования на уроках математики в начальной школе.
Современная школа продолжает поиски оптимальных вариантов работы с детьми. Одной из главных задач колы, несомненно, является воспитание творческой личности, стимулирование у ребенка познавательной активности, развитие индивидуальных творческих задатков, формирование логического, научного мышления. Выполнение этих задач зависит от того, насколько ребенок уже в младшем школьном возрасте вовлекается в собственный, творческий, исследовательский поиск, самостоятельное открытие новых знаний. Геометрический материал имеет для этого хорошие возможности. Многое зависит от того, на сколько сам учитель подготовлен к вовлечению ученика в творческую, исследовательскую работу, насколько он сам готов к использованию интеллектуально-развивающей функции геометрии. Рассмотрим одну из таких тем геометрии, которая допускает проведение собственных наблюдений и экспериментов. Это – «Золотое сечение».
Иоганн Kеплер говорил, что геометрия владеет двумя сокровищами - теоремой Пифагора и золотым сечением. И если первое из этих двух сокровищ можно сравнить с мерой золота, то второе - с драгоценным камнем.
Теорему Пифагора знает каждый школьник, а что такое золотое сечение - далеко не все.
Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения - высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.
Золотое сечение - гармоническая пропорция
В математике пропорцией называют равенство двух отношений: a : b = c : d.
Отрезок прямой АВ можно разделить точкой C на две части следующими способами:
на две равные части АВ : АC = АВ : ВC;
на две неравные части в любом отношении (такие части пропорции не образуют);
таким образом, когда АВ : АC = АC : ВC.
Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.
Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему
a : b = b : cилис : b = b : а.
Построение пропорции.
Рис. 6. Деление отрезка прямой по золотому сечению. BC = 1/2 AB; CD = BC
Здесь приводится построение точки Е, делящий отрезок прямой в пропорции золотое сечение.
Из точки В восстанавливается перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.
Именно эти отрезки использовал Евклид при построении правильного пятиугольника, т.к. каждая из диагоналей пятиугольной звезды делится другими именно в такой пропорции.
Таким образом, звездчатый пятиугольник также обладает «золотым сечением». Интересно, что внутри пятиугольника можно продолжить строить пятиугольники, и это отношение будет сохраняться.
Звездчатый пятиугольник называется пентаграммой. Пифагорейцы выбрали пятиконечную звезду в качестве талисмана, она считалась символом здоровья и служила опознавательным знаком.
В настоящее время существует гипотеза, что пентаграмма – первичное понятие, а «золотое сечение» вторично. Пентаграмму никто не изобретал, ее только скопировали с натуры. Вид пятиконечной звезды имеют пятилепестковые цветы плодовых деревьев и кустарников, морские звезды. Те и другие создания природы человек наблюдает уже тысячи лет. Поэтому естественно предположить, что геометрический образ этих объектов - пентаграмма – стала известна раньше, чем «золотая» пропорция.
Пентаграммой называется звездчатый пятиугольник. Пифагорейцы выбрали пятиконечную звезду и в качестве талисмана, она считается символом здоровья и служила опознавательным знаком.
Бытует легенда о том, что один из пифагорейцев больным попал в дом к незнакомым людям. Они старались его выходить, но болезнь не отступала. Не имея средств заплатить за лечение и уход, больной перед смертью просил хозяина дома нарисовать у входа пятиконечную звезду, объяснив, что по этому знаку найдутся люди, которые вознаградят его. И на самом деле, через некоторое время один из путешествующих пифагорейцев заметил звезду и стал расспрашивать хозяина дома о том, каким образом она появилась у входа. После рассказа хозяина гость щедро вознаградил его.
Пентаграмма была хорошо известна и в Древнем Египте. Но непосредственно как эмблема здоровья она была принята лишь в Древней Греции.
В настоящее время существует гипотеза, что пентаграмма – первичное понятие, а «золотое сечение» вторично. Пентаграмму никто не изобретал, ее только скопировали с натуры. Вид пятиконечной звезды имеют пятилепестковые цветы плодовых деревьев и кустарников, морские звезды. Те и другие создания природы человек наблюдает уже тысячи лет. Поэтому естественно предполагать, что геометрический образ этих объектов – пентаграмма – стала известна раньше, чем «золотая» пропорция.
Правильный пятиугольник
Правильный пятиугольник или пентагон (греч. πενταγωνον) — геометрическая фигура, правильный многоугольник с пятью сторонами.
Свойства
У правильного пятиугольника угол равен
Площадь правильного пятиугольника с длиной стороны t рассчитывается по формуле: , или
, где R — радиус описанной окружности, r — радиус вписанной окружности.
Отношение диагонали правильного пятиугольника к стороне равно золотому сечению, то есть числу .
Поэтому радиус вписанной окружности, радиус описанной окружности, высоту и площадь правильного пятиугольника можно вычислить и без использования тригонометрических функций:
Правильный пятиугольник может быть построен с помощью циркуля и линейки, или вписав его в заданную окружность, или построив на основе заданной стороны. Этот процесс описан Евклидом в его «Началах» около 300 года до н. э.
Вот один из методов построения правильного пятиугольника вписанного в заданную окружность:
Постройте окружность, в которую будет вписан пятиугольник и обозначьте её центр как O. (Это зелёная окружность на схеме справа).
Выберите на окружности точку A, которая будет одной из вершин пятиугольника. Постройте прямую через O и A.
Постройте прямую перпендикулярно прямой OA, проходящую через точку O. Обозначьте одно её пересечение с окружностью как точку B.
Постройте точку C посередине между O и B.
Проведите окружность с центром в C через точку A. Обозначьте её пересечение с прямой OB (внутри первоначальной окружности) как точку D.
Проведите окружность с центром в A через точку D. Обозначьте её пересечения с оригинальной (зелёной окружностью) как точки E и F.
Проведите окружность с центром в E через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку G.
Проведите окружность с центром в F через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку H.
Постройте правильный пятиугольник AEGHF.
Связь с числами Фибоначчи. Великий математик.
Итальянский купец Леонардо из Пизы (1180-1240), более известный под прозвищем Фибоначчи был, безусловно, самым значительным математиком средневековья. Роль его книг в развитии математики и распространении в Европе математических знаний трудно переоценить.
Жизнь и научная карьера Леонардо теснейшим образом связана с развитием европейской культуры и науки.
В век Фибоначчи возрождение было еще далеко, однако история даровала Италии краткий промежуток времени, который вполне можно было назвать репетицией надвигающейся эпохи Ренессанса. Этой репетицией руководил Фридрих II, император (с 1220 года) Священной Римской империи.
Столь любимые его дедом рыцарские турниры Фридрих II совсем не признавал. Вместо этого он культивировал гораздо менее кровавые математические соревнования, на которых противники обменивались не ударами, а задачами.
На таких турнирах и заблистал талант Леонардо Фибоначчи. Этому способствовало хорошее образование, которое дал сыну купец Боначчи, взявший его с собой на Восток и приставивший к нему арабских учителей.
Покровительство Фридриха и стимулировало выпуск научных трактатов Фибоначчи:
Книга абака, написанная в 1202 году, но дошедшая до нас во втором своем варианте, который относится к 1228 г.
Практики геометрии" (1220г.)
Книга квадратов(1225г.)
По этим книгам, превосходящим по своему уровню арабские и средневековые европейские сочинения, учили математику, чуть ли не до времен Декарта (XVII в.)
Последовательность Фибоначчи
Наибольший интерес представляет для нас сочинение "Книга абака". Эта книга представляет собой объемный труд, содержащий почти все арифметические и алгебраические сведения того времени и сыгравший значительную роль в развитии математики в Западной Европе в течение нескольких следующих столетий. В частности, именно по этой книге европейцы познакомились с индусскими (арабскими) цифрами.
Сообщаемый в "Книге абака" материал поясняется на примерах задач, составляющих значительную часть этого тракта.
На стр. 123- 124 данной рукописи, Фибоначчи поместил следующую задачу:
Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течение года, если природа кроликов такова, что через месяц пара кроликов производит на свет др. пару, а рождают кролики со второго месяца после своего рождения.
Ясно, что если считать первую пару кроликов новорожденными, то на второй месяц мы будем по прежнему иметь одну пару; на 3-й месяц- 1+1=2; на 4-й- 2+1=3 пары (ибо из двух имеющихся пар потомство дает лишь одна пара); на 5-й месяц- 3+2=5 пар (лишь 2 родившиеся на 3-й месяц пары дадут потомство на 5-й месяц); на 6-й месяц- 5+3=8 пар (ибо потомство дадут только те пары, которые родились на 4-м месяце) и т. д.
Таким образом, если обозначить число пар кроликов, имеющихся на n-м месяце через Fk , то F1=1, F2=1, F3=2, F4=3, F5=5, F6=8, F7=13, F8=21 и т. д., причем образование этих чисел регулируется общим законом:
Fn=Fn-1+Fn-2 при всех n 2, ведь число пар кроликов на n-м месяце равно числу Fn-1 пар кроликов на предшествующем месяце плюс число вновь родившихся пар, которое совпадает с числом Fn-2 пар кроликов, родившихся на (n-2)-ом месяце (ибо лишь эти пары кроликов дают потомство).
Числа Fn , образующие последовательность 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... называются " числами Фибоначчи", а сама последовательность - последовательностью Фибоначчи.
Суть последовательности Фибоначчи в том, что, начиная с 1,1, следующее число получается сложением двух предыдущих. Но почему эта последовательность так важна?
Данная последовательность асимптотически (приближаясь все медленнее и медленнее) стремится к некоторому постоянному соотношению. Однако, это соотношение иppационально, то есть представляет собой число с бесконечной, непредсказуемой последовательностью десятичных цифр в дробной части. Его невозможно выразить точно.
Если какой-либо член последовательности Фибоначчи разделить на предшествующий ему (например, 13:8), результатом будет величина, колеблющаяся около иppационального значения 1.61803398875... и через pаз то превосходящая, то не достигающая его. Hо даже затратив на это Вечность, невозможно узнать соотношение точно, до последней десятичной цифры. Kpаткости ради, мы будем приводить его в виде 1.618.
Особые названия этому соотношению начали давать еще до того, как Лука Пачиоли (средневековый математик) назвал его Божественной пpопоpцией. Cpеди его современных названий есть такие, как Золотое сечение, Золотое среднее и отношение вертящихся квадратов. Kеплеp назвал это соотношение одним из "сокровищ геометрии". В алгебре общепринято его обозначение греческой буквой фи
Ф=1.618
Человек подсознательно ищет Божественную пpопоpцию: она нужна для удовлетвоpения его потpебности в комфоpте.
Пpи делении любого члена последовательности Фибоначчи на следующий за ним получается пpосто обpатная к 1.618 величина (1 : 1.618=0.618). Hо это тоже весьма необычное, даже замечательное явление. Поскольку пеpвоначальное соотношение - бесконечная дpобь, у этого соотношения также не должно быть конца.
При делении каждого числа на следуещее за ним через одно,получаем число 0.382
1:0.382=2.618
Подбирая таким образом соотношения, получаем основной набор коэффициентов Фибоначчи: 4.235, 2.618, 1.618,0.618,0.382,0.236.Упомянем также 0.5. Все они играют особую роль в природе и в частности в техническом анализе.
Тут необходимо отметить, что Фибоначчи лишь напомнил свою последовательность человечеству, так как она была известна еще в древнейшие времена под названием Золотое сечение.
Понятие «золотое сечение» находит применение для описания закономерностей окружающего мира предметов и явлений.
«Золотое сечение» в скульптуре.
Скульптурные сооружения, памятники воздвигаются, чтобы увековечить знаменательные события, сохранить в памяти потомков имена прославленных людей, их подвиги и деяния.
Известно, что еще в древности основу скульптуры составляла теория пропорций. Отношения частей человеческого тела связывались с формулой золотого сечения.
Пропорции «золотого сечения» создают впечатление гармонии красоты, поэтому скульпторы использовали их в своих произведениях.
Скульпторы утверждают, что талия делит совершенное человеческое тело в отношении «золотого сечения». Так, например, знаменитая статуя Аполлона Бельведерского состоит из частей, делящихся по золотым отношениям.
Великий древнегреческий скульптор Фидий часто использовал «золотое сечение» в своих произведениях. Самыми знаменитыми из них были статуя Зевса Олимпийского и Афины Парфенос.
« Золотое сечение» в архитектуре.
В книгах о «золотого сечения» можно найти замечание о том, что в архитектуре, как и в живописи, все зависит от положения наблюдателя, и что, если некоторые пропорции в здании с одной стороны кажутся образующими «золотое сечение», то с других точек зрения они будут выглядеть иначе. « Золотое сечение» дает наиболее спокойное отношение размеров тех или иных длин.
Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.)
Парфенон имеет 8 колон по коротким сторонам и 17 по длинным сторонам. Выступы сделаны целиком из квадратов пентилейского мрамора. Благородство материала, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон (синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. если произвести деление храма по «золотому сечению», то получим те или иные выступы фасада.
Известный русский архитектор Казаков в своем творчестве широко использовал «золотое сечение». Его талант был многогранным, но в большей степени он раскрылся в многочисленных осуществленных проектах жилых домов и усадеб, например, «золотое сечение» можно обнаружить в архитектуре здания сената в Кремле. По проекту Казакова в Москве была построена Голицинская больница, которая в настоящее время называется первой клинической больницей имени Н.И, Пирогова.
Еще один архитектурный шедевр Москвы – дом Пашкова – является одним из наиболее совершенных произведений архитектуры В.Баженова.
Прекрасное творение Баженова прочно вошло в ансамбль центра современной Москвы, обогатило его. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 году. При восстановлении здание приобрело более массивные формы. Не сохранилась и внутренняя планировка здания, о которой дают представления только чертеж нижнего этажа.
Многие высказывания зодчего заслуживают внимание и в наши дни. О своем любимом искусстве Баженов говорил: «Архитектура – главнейшее имеет три предмета: красоту, спокойность и прочность здания… к достижению сего служит руководством знание пропорции, перспектива, механика или вообще физика, а всем им общим вождением является рассудок».
«Золотое сечение» в живописи.
Переходя к примерам «золотого сечения» и живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность – одна из загадок истории. Сам Леонардо да Винчи говорил: «Пусть никто, не будучи математиком, не дерзнет читать мои труды».
Портрет Монны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Существует очень много версий об истории этого портрета.
Однажды Леонардо да Вини получил заказ от банкира Франческо де ле Джокондо написать портрет молодой женщины, жены банкира Монны Лизы. Женщина не была красива, но в ней привлекали внимание простота и естественность облика. Леонардо согласился написать портрет. Его модель была печальной и грустной, но Леонардо рассказал ей сказку, услышав которую, она стала живой и интересной.
На знаменитой картине И. И. Шишкина с очевидностью просматриваются мотивы золотого сечения. Ярко освещенная солнцем сосна (стоящая на первом плане) делит длину картины по золотому сечению. Справа от сосны - освещенный солнцем пригорок. Он делит по золотому сечению правую часть картины по горизонтали. Слева от главной сосны находится множество сосен - при желании можно с успехом продолжить деление картины по золотому сечению и дальше. Наличие в картине ярких вертикалей и горизонталей, делящих ее в отношении золотого сечения, придает ей характер уравновешенности и спокойствия, в соответствии с замыслом художника. Когда же замысел художника иной, если, скажем, он создает картину с бурно развивающимся действием, подобная геометрическая схема композиции (с преобладанием вертикалей и горизонталей) становится неприемлемой.
Нет живописи более поэтичной, чем живопись Боттичелли Сандро, и нет у великого Сандро картины более знаменитой, чем его «Венера». Для Боттичелли его Венера – это воплощение идеи универсальной гармонии «золотого сечения», господствующего в природе. Пропорциональный анализ Венеры убеждает нас в этом
“Золотое сечение” в поэзии.
Проявляется как наличие определяющего момента стихотворения (кульминации, смыслового перелома, главной мысли или их сочетаний) в строке, приходящейся на точку деления общего числа строк стихотворения в “золотой” пропорции. Это можно увидеть на примере стихотворения “Из Пиндемонти” А.С. Пушкина.
Не дорого ценю я громкие права,
От коих не одна кружится голова.
Я не робщу о том, что отказали боги
Мне в сладкой участи оспоривать налоги,
Или мешать царям друг с другом воевать;
И мало горя мне, свободно ли печать
Морочит олухов иль чуткая цензура
В журнальных замыслах стесняет балагура.
Все это, видите ль, слова, слова, слова.
Иные, лучшие мне дороги права;
Иная, лучшая потребна мне свобода:
Зависеть от властей, зависеть от народа –
Не все ли нам равно? Бог с ними.
Никому.
Отчета не давать, себе лишь самому
Служить и угождать; для власти, для ливреи
Не гнуть ни совести, ни помыслов, ни шеи;
По прихоти своей скитаться здесь и там,
Дивясь божественным природы красотам,
И пред созданьями искусств и вдохновенья
Трепеща радостно в восторгах умиленья.
- Вот счастье! Вот права...
Принцип “золотого сечения” проявляется в том, что Стихотворение делится на две части. “Их ценности” - низость земного раболепия (13 строк), “мои ценности” - высота духовной свободы (8 строк), 8/13- “золотое сечение”). Основные части делятся на меньшие смысловые единицы (темы), которые также находятся в “золотых” отношениях. Рассмотрим первую часть: основные темы этой части Первая тема – 5 строк, вторая – 8. Первую тему можно разделить на микротемы. (Первая микротема – 2 строки, вторая – 3). Получается ряд: 2, 3, 5, 8, 13. Получаем последовательность Фибоначчи.
Необходимо сказать, что золотое сечение имеет большое применение в нашей жизни. Было доказано, что человеческое тело делится в пропорции золотого сечения линией пояса. Раковина наутилуса закручена подобно золотой спирали. Благодаря золотому сечению был открыт пояс астероидов между Марсом и Юпитером – по пропорции там должна находиться ещё одна планета. Возбуждение струны в точке, делящей её в отношении золотого деления, не вызовет колебаний струны, то есть это точка компенсации. На летательных аппаратах с электромагнитными источниками энергии создаются прямоугольные ячейки с пропорцией золотого сечения. Джоконда построена на золотых треугольниках, золотая спираль присутствует на картине Рафаэля «Избиение младенцев». Пропорция обнаружена в картине Сандро Боттичелли «Рождение Венеры». Известно много памятников архитектуры, построенных с использованием золотой пропорции, в том числе Пантеон и Парфенон в Афинах, здания архитекторов Баженова и Малевича. Иоанну Кеплеру, жившему пять веков назад, принадлежит высказывание: "Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, второе - деления отрезка в крайнем и среднем отношении". Знание свойств золотой пропорции может служить творческим людям хорошим фундаментом, придавать им уверенность и в науке и в жизни.
Литература:
Д. Пидоу. Геометрия и искусство. – М.: Мир, 1979.
Журнал "Наука и техника"
Журнал «Квант», 1973, № 8.
Журнал «Математика в школе», 1994, № 2; № 3.
Ковалев Ф.В. Золотое сечение в живописи. К.: Выща школа, 1989.