Просмотр содержимого документа
«Взаимное расположение прямых»
ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМЫХ.
Угол между двумя прямыми, условия параллельности и перпендикулярности двух прямых, пересечение прямых, расстояние от данной точки до данной прямой.
Под углом между прямыми в плоскости понимают меньший (острый) из двух смежных углов образованными этими прямыми.
Если прямые l1 и l2 заданы уравнениями с угловыми коэффициентами у=к1х+b1 и у=к2х+b2, то угол φ между ними вычисляется по формуле
tg φ=
Условие параллельности прямых l1 и l2 имеет вид
k1 = k2,
а условие их перпендикулярности
k1 = - (или k1k2= - 1)
Если прямые l1 и l2 заданы общими уравнениями А1х+B1y+C1=0 и А2х+B2y+C2=0,
то величина φ угла между ними вычисляется по формуле
tg φ=
угловые их параллельности
( или А1В2-А2В1=0)
Условие их перпендикулярности
А1А2+В1В2=0
Для нахождения общих точек прямых l1 и l2 необходимо решить систему
уравнений
А1х+В1у+С1=0, у=k1x+b1
или
А2х+B2y+C2=0, у=k2x+b2
При этом:
Если , то имеется единственная точка пересечения прямых ;
Если - прямые l1 и l2 не имеет общей точки, т. е параллельны;
Если -прямые имеют бесконечное множество точек т.е совпадают
Расстоянием d от точки М0 (х0;у0) до прямой Ах+Ву+С=0 называется длина перпендикуляра , опущенного из этой точки на прямую .
Расстояние d определяется по формуле
d=
Расстояние от точки М0 (х0;у0) до прямой х cos + y sin- p=0 вычисляется по формуле
d=
ПРИМЕР: найти угол между прямыми :
1) y=2x-3 и y=;
2) 2x-3y+10=0 и 5x – y+4=0;
3) y= и 8x+6y+5=0;
4) y=5x+1 и y=5x-2;
Воспользуемся формулой. Подставляя в неё значения k1=2 и k2= , находим tg===
=arctg);
Подставим значения А1 = 2, В1=-3,А2=5,В2=-1 в формулу : tg==1,
Здесь k1=найдём k2. Для этого перейдём от 6y =-8x-5 к эквивалентному равенству y=- Здесь k2=-Так как k1*k2=-1, то данные прямые перпендикулярны. (По формуле получаем:tg==)
k1=5,k2=5, tg=0,=0.
Задания для практических занятий:
1. Найти угол между прямыми:
1) у=0,5х-3 и у=2х-2;
2) 2х-3у-7=0 и 2х-у+5=0;
3) у=х+6 и 3х-2у-8=0;
4) у= 7х -1 и у=7х+1;
2. Исследовать взаимное расположение следующих пар прямых:
1) 3х+5у-9=0 и 10х-6у+4=0
2) 2х+5у-2=0 и х+у+4=0;
3) 2у=х-1 и 4у-2х+2=0;
4) х+8=0 и 2х-3=0;
5) =1 и у=х+2;
6) х+у=0 и х-у=0
7)у+3=0 и 2х+у-1=0;
8) у=3-6х и 12х+2у-5=0;
9) 2х+3у=8 и х-у-3=0
10) х -у-1=0 и х +у+2=0
3. При каких значениях следующие пары прямых: а) параллельны; б) перпендикулярны.
1) 2х-3у+4=0 и х-6у+7=0;
2) х-4у+1=0 и -2х+у+2=0;
3) 4х+у-6=0 и 3х+у-2=0;
4) х- у+5=0 и 2х+3у+3=0;
4.Через точку пересечения прямых 3х-2у+5=0; х+2у-9=0 проведена прямая, параллельная прямой 2х+у+6=0. Составить ее уравнение.
5. Найти уравнение прямой, проходящий через точку А (-1;2):
а) параллельно прямой у=2х-7;
б) перпендикулярно прямой х+3у-2=0.
6. Найти длину высоты ВД в треугольнике с вершинами А (4;-3); В (-2;6) и С (5;4).
7. Даны уравнения сторон треугольника: х+3у-3=0, 3х-11у-29=0 и 3х-у+11=0.
Найти вершины этого треугольника.
Задания для самостоятельного решения
1. Найти острый угол между прямыми:
1) у=3х и у= - х
2) 2х-3у+6=0 и 3х-у-3=0
3) =1 и =1
4) 3х+4у-12=0 и 15х-8у-45=0
2. Исследовать взаимное расположение следующих пар прямых:
1) 2х-3у+4=0 и 10х+3у-6=0
2) 3х-4у+12=0 и 4х+3у-6=0
3) 25х+20у-8=0 и 5х+4у+4=0
4) 4х+5у-8=0 и 3х-2у+4=0
5) у=3х+4 и у=-3х+2
3. Найти уравнение прямой, проходящий через точку В (2;-3)
а) параллельно прямой, соединяющей точки М1 (-4;0) и М2 (2;2);
б) перпендикулярно прямой х-у=0.
4. Составить уравнение прямой, содержащий высоту ВД в треугольнике с вершинами
А (-3;2), В (5;-2), С (0; 4)
5. Найти площадь треугольника, образованного прямыми 2х+у+4=0, х+7у-11=0 и 3х-5у-7=0.
6.Через точку пересечения прямых 3х+2у-4=0 и х-5у+8=0 проведены прямые, одна из которых проходит через начало координат, а другая параллельна оси Ох. Составить их уравнения.
7. Дан четырехугольник АВСД с вершинами А (3;5); В (6;6); С (5;3); Д (1;1). Найти:
а) координаты точки пересечения диагоналей;
б) угол между диагоналями.
8.Даны вершины треугольника А(2;-2), В (3;5), С (6;1). Найти:
1) длины сторон АС и ВС;
2) уравнения прямых, на которых лежат стороны ВС и АС;
3) уравнение прямой , на которой лежит высота, проведенная из В;
4) длину этой высоты;
5) уравнение прямой, на которой лежит медиана проведенная из точки А;
6) длину этой медианы;
7) уравнение прямой, на которой лежит биссектриса угла С;