kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Задачи по теме "Теорема Пифагора"

Нажмите, чтобы узнать подробности

Образовательные и воспитательные задачи обучения математике должны решаться комплексно, с учетом индивидуальных, возрастных особенностей учащихся, специфики математики как науки и учебного предмета, определяющей её роль и место в общей системе школьного образования Учителю предоставляется право самостоятельного выбора методических путей и приёмов решения этих задач. Сегодня, когда практически каждому желающему продуктивно работать, приходится всё время доучиваться и переучиваться, ясно, что школа должна не только и может быть, не столько снабжать ребят базовыми исходными знаниями, но и прививать умение самостоятельно их развивать в дальнейшем.

        Применение любого метода обучения предполагает соразмерное сочетание его с самостоятельной работой учащихся, ибо учение следует рассматривать не только как воспроизведение и запоминание учебного материала,  а, в первую очередь, как активную познавательную деятельность, направленную на  умственную  переработку этого материала, что достигается самостоятельной работой школьников.

          Совершенствование методики преподавания и методов обучения  неразрывно связано с вопросами развития самостоятельности учащихся. Именно в развитии самостоятельности кроются большие возможности всего педагогического процесса, повышения его эффективности. Вышесказанное свидетельствует о том, что самостоятельность является одним из главнейших качеств учащихся и важнейшим условием их обучения. Самостоятельность – это качество человека, которое характеризуется сознательным выбором действия и решительностью в его осуществлении. Она в той или иной степени присуща каждому учащемуся. Сознательный выбор того или иного действия характеризует активную умственную деятельность учащихся, а осуществление его – решительность. Без самостоятельности в обучении не мыслимо глубокое усвоение математических знаний. Самостоятельность неразрывно связана с активностью, что в свою очередь является движущей силой в процессе познания. При этом, безусловно, далеко не последнюю роль играют настойчивость, увлеченность и другие качества, которые развиваются вместе с самостоятельностью, которая особенно важна для развития различных умений учащихся на уроках математики. Для глубокого изучения учебного материала необходимо разумное сочетание различных видов самостоятельных работ, а также индивидуально – психологические способности учащихся, которые помогают оптимально эффективно применить личностно – ориентированный подход в обучении математике.

Тема:  Применение элементов личностно-ориентированных технологий как фактор осуществления индивидуального подхода посредством использования комплектов разноуровневых заданий на уроках математики

Цель: Анализ работы за межаттестационный период по проблеме применения элементов личностно-ориентированных технологий на уроках математики.

Задачи:

  1. представить некоторые основные группы педтехнологий;
  2. проанализировать наиболее общие особенности традиционных и личностно ориентированных технологий обучения;
  3. представить комплекты разноуровневых заданий, способствующих формированию навыков самообразования учащихся и формированию общепредметной социальной компетентности;
  4. выявить и проанализировать уровни обученности по математике;
  5. представить проектировочную деятельность на следующие пять лет.

Объектом исследования служат личностно-ориентированные технологии, их отдельные элементы, реализуемые через комплекты разноуровневых заданий, способствующих формированию навыков самообразования учащихся и формированию общепредметной социальной компетентности.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Задачи по теме "Теорема Пифагора" »

ПРОВЕРОЧНАЯ РАБОТА ПО ТЕМЕ «ТЕОРЕМА ПИФАГОРА» 8 КЛАСС, 1 вариант

  1. Найдите гипотенузу в прямоугольном треугольнике с катетами 6 и 8 см. Сделайте рисунок.

  2. Найдите катет в прямоугольном треугольнике, если гипотенуза равна 17 м, а второй катет равен 8 м. Сделайте рисунок

  3. В квадрате АВСД сторона АВ равна 6 см. Чему равна диагональ квадрата ВД? Сделайте рисунок

______________________________________________________________________________________

  1. В прямоугольнике длина равна √40, а ширина - 9, найдите диагональ прямоугольника. Сделайте рисунок.

  2. В равнобедренном треугольнике МРК, основание 20 см, найдите высоту РН, проведенную к основанию треугольника, если боковая сторона МР равна 26. Сделайте рисунок.

  3. Найдите высоту, опущенную на гипотенузу прямоугольного треугольника, если его катеты равны 3 см и 5 см. Сделайте рисунок.




ПРОВЕРОЧНАЯ РАБОТА ПО ТЕМЕ «ТЕОРЕМА ПИФАГОРА» 8 КЛАСС, 2 вариант

  1. Найдите гипотенузу в прямоугольном треугольнике с катетами 5 и 12 см. Сделайте рисунок.

  2. Найдите катет в прямоугольном треугольнике, если гипотенуза равна 17 м, а второй катет равен 8 м. Сделайте рисунок

  3. В квадрате АВСД сторона АВ равна 10 см. Чему равна диагональ квадрата ВД? Сделайте рисунок

______________________________________________________________________________________

  1. В прямоугольнике длина равна √40, а ширина - 9, найдите диагональ прямоугольника. Сделайте рисунок.

  2. В равнобедренном треугольнике МРК, основание 20 см, найдите высоту РН, проведенную к основанию треугольника, если боковая сторона МР равна 26. Сделайте рисунок.

  3. Найдите высоту, опущенную на гипотенузу прямоугольного треугольника, если его катеты равны 3 см и 5 см. Сделайте рисунок.



ПРОВЕРОЧНАЯ РАБОТА ПО ТЕМЕ «ТЕОРЕМА ПИФАГОРА» 8 КЛАСС, 3 вариант

  1. Найдите гипотенузу в прямоугольном треугольнике с катетами 6 и 8 см. Сделайте рисунок.

  2. Найдите катет в прямоугольном треугольнике, если гипотенуза равна 13 м, а второй катет равен 12 м. Сделайте рисунок

  3. В квадрате АВСД сторона АВ равна 11 см. Чему равна диагональ квадрата ВД? Сделайте рисунок

______________________________________________________________________________________

  1. В прямоугольнике длина равна √40, а ширина - 9, найдите диагональ прямоугольника. Сделайте рисунок.

  2. В равнобедренном треугольнике МРК, основание 20 см, найдите высоту РН, проведенную к основанию треугольника, если боковая сторона МР равна 26. Сделайте рисунок.

  3. Найдите высоту, опущенную на гипотенузу прямоугольного треугольника, если его катеты равны 3 см и 5 см. Сделайте рисунок.



ПРОВЕРОЧНАЯ РАБОТА ПО ТЕМЕ «ТЕОРЕМА ПИФАГОРА» 8 КЛАСС, 4 вариант


  1. Найдите гипотенузу в прямоугольном треугольнике с катетами 6 и 8 см. Сделайте рисунок.

  2. Найдите катет в прямоугольном треугольнике, если гипотенуза равна 17 м, а второй катет равен 8 м. Сделайте рисунок

  3. В квадрате АВСД сторона АВ равна 70 см. Чему равна диагональ квадрата ВД? Сделайте рисунок

______________________________________________________________________________________

  1. В прямоугольнике длина равна √40, а ширина - 9, найдите диагональ прямоугольника. Сделайте рисунок.

  2. В равнобедренном треугольнике МРК, основание 20 см, найдите высоту РН, проведенную к основанию треугольника, если боковая сторона МР равна 26. Сделайте рисунок.

  3. Найдите высоту, опущенную на гипотенузу прямоугольного треугольника, если его катеты равны 3 см и 5 см. Сделайте рисунок.



Получите в подарок сайт учителя

Предмет: Математика

Категория: Тесты

Целевая аудитория: 8 класс

Скачать
Задачи по теме "Теорема Пифагора"

Автор: Костромина Оксана Анатольевна

Дата: 06.06.2015

Номер свидетельства: 218017

Похожие файлы

object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(56) "урок по теме "Теорема Пифагора""
    ["seo_title"] => string(30) "urokpotiemietieoriemapifaghora"
    ["file_id"] => string(6) "296372"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1455985691"
  }
}
object(ArrayObject)#874 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(75) "Решение задач по теме «Теорема Пифагора»"
    ["seo_title"] => string(40) "reshenie_zadach_po_teme_teorema_pifagora"
    ["file_id"] => string(6) "595272"
    ["category_seo"] => string(9) "geometria"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1639846360"
  }
}
object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(76) "Конспект урока  по теме "Теорема Пифагора""
    ["seo_title"] => string(40) "konspiekturokapotiemietieoriemapifaghora"
    ["file_id"] => string(6) "307916"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1458476875"
  }
}
object(ArrayObject)#874 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(128) "план урока по теме: "Теорема Пифагора. Решение задач" геометрия 8 класс "
    ["seo_title"] => string(81) "plan-uroka-po-tiemie-tieoriema-pifaghora-rieshieniie-zadach-ghieomietriia-8-klass"
    ["file_id"] => string(6) "226379"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1440238640"
  }
}
object(ArrayObject)#852 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(95) "Конспект урока геометрии по теме "Теорема Пифагора" "
    ["seo_title"] => string(58) "konspiekt-uroka-ghieomietrii-po-tiemie-tieoriema-pifaghora"
    ["file_id"] => string(6) "150496"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1420485856"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства