Просмотр содержимого документа
««Арифметическая и геометрическая прогрессии» урок по алгебре 9 кл»
Педагогическое кредо:
Предмет математики столь серьёзен,
что не следует упускать ни одной возможности сделать
его более занимательным.
Блез Паскаль
Тема урока: «Арифметическая и геометрическая прогрессии»
урок алгебры в 9 классе
Цели урока:
Обобщение и систематизация знаний учащихся по данной теме.
Ознакомление учащихся с историческим материалом.
Развитие коммуникативности.
Урок «Совет Мудрецов»
Урок – это маленький спектакль, который рассчитан на успех учителя и его учеников
Плакат к уроку: «Прогрессио – движение вперед»
Класс разбит на три группы. За столом трое мудрецов (ученики девятого класса).
Учитель. Закончился двадцатый век.
Куда стремится человек?
Изучен космос и моря,
Строенье звезд и вся земля.
Номатематиков зовет
Известный лозунг
«Прогрессио – движение вперед».
Сегодня у нас в классе состоится совет – совет Мудрецов. Мудрецы – ученики, сидящие в классе по группам, и мудрецы, сидящие за столом учителя. Узнаете ли вы их?
(За столом сидят: Архимед. Гаусс. Магницкий.)
Архимед. Кто формулу суммы квадратов нашел?
Иверной дорогoй к прoгрессу пришел?
Математик и физик. Я – Архимед.
О жизни моей ходит много легенд.
Гаусс.О! Я – Карл Гаусс! (1777–1855 гг.) Нашел моментально сумму всех 'натуральных чисел от 1 до 100, будучи еще учеником начальной школы.
Магницкий.Господа! Имею честь представиться. Я, Леонтий Филиппович Магницкий, – создатель первого учебника «Арифметика».
Учитель.Скажите, ребята, почему эти ученые вдруг собрались вместе за одном столом? Какой вопрос математики объединил их? Если вы не догадываетесь, то внимательно посмотрите сценку.
В классе появляется индусский царь с двумя слугами.
Царь. Я, индусский царь Шерам, научился играть в шахматы и восхищен ее остроумием и разнообразием в ней положений. Слуги, позовите изобретателя Сету. Я желаю достойно вознаградить тебя, Сета, за прекрасную игру, которую ты придумал. Назови награду, которая тебя удовлетворит, и ты получишь ее.
Сета.Повелитель, прикажи выдать мне за первую клетку шахматной доски одно пшеничное зерно.
Царь. Простое пшеничное зерно?
Сета.Да, повелитель. За вторую клетку прикажи выдать два зерна, за третью – 4, за четвертую – 8, за пятую – 16 и так до 64–й клетки.
Царь Шерам рассмеялся.
Учитель.О, мудрецы 9–го класса, давайте посоветуемся. Стоит ли царю смеяться?
Архимед.Наимудрейшие! Если бы царю удалось засеять пшеницей площадь всей поверхности Земли, считая и моря, и океаны, и горя, и пустыню, и Арктику с Антарктикой, и получить удовлетворительный урожай, то, пожалуй, лет за 5 он смог бы рассчитаться.
Гаусс.Математика – это точная наука. (Записывает на доске 18 446 744 073 709 551 615. Читает.) Восемнадцать квинтильонов четыреста сорок шесть квадрильонов семьсот сорок четыре триллиона семьдесят три биллиона семьсот девять миллионов пятьсот пятьдесят одна тысяча шестьсот пятнадцать.
Магкицкий.Господа, мудрецы 9–го класса! Мои современники сказали бы так, что S64 18,5 ·1018. Правда, я Baм признаюсь, что в моем учебнике «Арифметика», изданном 200 лет назад, по которому целых полвека учились дети, много задач по теме. Прогрессии., но иные из них я сам решал с большим трудом, так как еще не нашел всех формул, связывающих, входящие в них величины.
Гаусс. Под скрип пера олист бумаги,
Запахните сие листы!
дапомогут вам наши начинанья!
Раздаются заготовки листов для проверки знаний теории, т.е. восстанавливается опорный конспект урока–лекции по теме «Прогрессии».
Прогрессии
Арифметическая
Геометрическая
an
1. Определение
2. Формула п
первых членов
3. Сумма п первых
членов прогрессии
4. Свойства
Ученики заполняют таблицу.
На экране появляется таблица:
Прогрессии
Арифметическая ап
Геометрическая bn
1. Определение
ап+1=ап + d
bn+1= bnq (q≠0,q≠1)
2. Формула п первых членов
an=a1+d(n – 1)
bn=b1qn – 1
3. Сумма п первых членов прогрессии
Sn=a1+an2∙n
Sn=2a1+dn-12∙n
Sn=b1qn-1q-1
4. Свойства
an=an+1+an-12
bn=bn+1bn-1
Бесконечно убывающая q
S=b11-q
Гаусс.Зная эти формулы, можно решить много интересных задач, и если вы, мудрецы 9–го класса, справитесь с их решением верно, то узнаете мое любимое изречение.
Каждой группе дается задание. В группу входит до пяти человек. Задания распределяются с учетом возможности каждой группы и рассчитаны на 25 минут.
I группа.
1. Найдите семнадцатый член арифметической прогрессии: 19, 15, ....
(– 45)
2. Найдите сумму первых семнадцати членов этой прогрессии.
(– 221).
3. Найдите сумму первых десяти членов этой прогрессии: