kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Решение тригонометрических уравнений

Нажмите, чтобы узнать подробности

  1. Методы решения уравнений:
  2. Замена переменной;
  3. Разложение на множители;
  4. Функционально-графический
Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Решение тригонометрических уравнений»


Тема: Решение тригонометрических уравнений

Вступление

  1. Методы решения уравнений:

    • Замена переменной;

    • Разложение на множители;

    • Функционально-графический.

  2. Деление на группы:

  1. Разминка.

  1. Установить соответствие.

  2. Исправить ошибки.

  3. Найти уравнение, которое не имеет решений.


I группа (соответствие)


sinx = 0

x = П/2+Пn

cosx = 0

x = П/4+Пn

sinx = 1

x = Пn

tgx = 0

x = 2Пn

cosx = 1

x = П/2+2Пn

tgx = 1

x = П/4+2Пn


II группа (найти ошибки)


arcsina+Пn

sinx = a

(-1)narccosa+2Пn

cosx = a

arctga+2Пn

tgx = a

(-1)narctga+2Пn

ctgx2 = a


III группа (не имеет решения)


1. cos2x = 0,

2. cos2x = 2,

3. 2cos2x = 0,

4. sin2x+2 = 4,

5. tg3x = 3,

6. 1+sin2x = 3,

7. cos2x = 1/y.


  1. Решают уравнение на доске все.


2tg23x-tg3x-1 = 0,

tg3x = y,

2y2-y-1 = 0,

D=9,

y1 = 1, y2 = -1/2,

tg3x = 1, tg3x = -1/2,

3x = П/4+Пn, 3x = -arctg1/2+Пn,

x = П/12+Пn/3 x = -1/3arctg1/2+Пn/3


  1. Решают на местах (самостоятельно).

1гр. 2гр. 3гр.

1 ученик решает у доски:

2tg23x-|tg3x|-1 = 0,

Пусть tg3x≥0, тогда:

2tg23x-tg3x-1 = 0,

tg3x = y,

2y2-y-1 = 0,

D=9,

y1 = 1,

y2 = -1/2 – не удовлетворяет условию, так как tg3x≥0,

tg3x = 1,

3x = П/4+Пn,

x = П/12+Пn/3, nєZ.

Пусть tg3x˂0, тогда:

y1 = -1,

y2 = 1/2 – не удовлетворяет условию, так как tg3x˂0,

tg3x = -1,

3x = -П/4+Пn,

x = -П/12+Пn/3.


  1. Историческое сведение.


1пр. secx = -0,5 имеет ли решение это уравнение?

2пр. чему равен tg11П/2? (не существует)

3пр. sin1 – какой знак имеет это выражение?


  1. Работа по карточкам (устно).


задание у доски 1 ученик:

4sin2x/3- sinx/3*cosx/3+cos2x/3 = 2,

4sin2x/3- sinx/3*cosx/3+cos2x/3-2sin2x/3- 2cos2x/3 = 0,

2sin2x/3- sinx/3*cosx/3-cos2x/3 = 0| : cos2x/3,

2tg2x/3- tgx/3-1 = 0,

tgx/3 = 0,

2a2- a-1 = 0,

D=1+8=0,

a=(1±3)/4,

a1 = 1, a2 = -1/2,

tgx/3 = 1, tgx/3 = -1/2,

x/3 = П/4+2Пn, x/3 = -arctg1/2+Пn,

x = 3П/4+6Пn x = -3arctg1/2+3Пn


Решить дома:

sin3x+ sin2x*cosx+ sinx*cos2x-cos3x = 2sinx,

sin3x+ sin2x*cosx+ sinx*cos2x-cos3x = 2(sin2x+ cos2x)sinx


  1. Решает уравнение 1 ученик с каждой группы (различными способами)


sin2x+3cos2x = 1

  1. Итог урока!




Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 10 класс

Скачать
Решение тригонометрических уравнений

Автор: Мулюкова Гульнара Анваровна

Дата: 15.11.2019

Номер свидетельства: 527115

Похожие файлы

object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(102) "Конспект  урока "Решение тригонометрических уравнений" "
    ["seo_title"] => string(64) "konspiekt-uroka-rieshieniie-trighonomietrichieskikh-uravnienii-1"
    ["file_id"] => string(6) "236006"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1443933139"
  }
}
object(ArrayObject)#873 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(114) "Конспект урока по теме "Решение тригонометрических уравнений""
    ["seo_title"] => string(66) "konspiekturokapotiemierieshieniietrighonomietrichieskikhuravnienii"
    ["file_id"] => string(6) "279440"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1453226116"
  }
}
object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(134) "Презентация для урока математики "Решение тригонометрических уравнений""
    ["seo_title"] => string(79) "priezientatsiiadliaurokamatiematikirieshieniietrighonomietrichieskikhuravnienii"
    ["file_id"] => string(6) "279448"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1453226604"
  }
}
object(ArrayObject)#873 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(89) "«Методы решения тригонометрических уравнений». "
    ["seo_title"] => string(54) "mietody-rieshieniia-trighonomietrichieskikh-uravnienii"
    ["file_id"] => string(6) "203241"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1429444976"
  }
}
object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(84) "Методы решения тригонометрических уравнений "
    ["seo_title"] => string(56) "mietody-rieshieniia-trighonomietrichieskikh-uravnienii-1"
    ["file_id"] => string(6) "220258"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(11) "presentacii"
    ["date"] => string(10) "1434558572"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства