kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Теорема Виета

Нажмите, чтобы узнать подробности

адо позаботиться о том, чтобы на уроках каждый ученик работал активно и увлеченно, и использовать это как отправную точку для возникновения и развития любознательности, глубокого познавательного интереса к предмету. Это особенно важно в подростковом возрасте, когда еще формируются, а иногда и только определяются интересы и склонности к тому или иному предмету. Именно в этот период нужно стремиться раскрыть притягательные стороны математики. В связи с этим ведутся поиски новых эффективных приемов обучения и таких методических приемов, которые активизировали бы мысль школьников, стимулировали бы их постоянное эффективное сотрудничество по схеме; учитель – ученик – учитель.

На своих уроках я использую новые методики обобщения и углубленного повторения изученного материала и предлагаю разработку уроков по теме: “ Теорема Виета”. Данная тема возникла не случайно. На мой взгляд, использование теоремы Виета не находит широкого применения не только в 8 классе, но и в последующих классах средней школы, в частности, это относится к свойствам квадратного уравнения ax2+bx+c=0,в котором a+b+c=0 или a-b+c=0.

На примере использования этих свойств можно показать, как развивать творческую и мысленную деятельность учащихся, воспитывать у них умение использовать замеченные свойства изучаемых объектов для решения задач, умение их обобщать.

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Урок по алгебре»













Урок по алгебре

в 8 классе

по теме:




«Теорема Виета», (закрепение).



































Цели урока:



1) Обобщить и закрепить знания по решению квадратных уравнений с использованием теоремы Виета и ей обратной; уметь применять при нахождении суммы и произведения корней приведенного квадратного уравнения, определении знаков корней уравнения, при проверке правильности нахождения корней квадратных уравнений.

2) Развивать логическое  мышление, навыки сравнения и анализа; развивать монологическую речь в  ходе  объяснений,  обоснований  выполняемых  действий; развивать коммуникативные навыки; навыки  самостоятельной  работы.





Оборудование:

компьютер, проектор, презентация, карточки для устной работы.







План урока:

1) Повторение теоремы Виета. Ее применение для любого квадратного уравнения.

2) Связь знаков и модулей корней приведенного квадратного уравнения с знаками и модулями его коэффициентов.

3) Тест на проверку усвоения темы.

4) Задание для разбора классом.




















Ход урока:


1. Организационный момент

Приветствие, проверка присутствующих, готовности к уроку. Оглашение плана урока.

(Сл. 1,2)

2. Работа по теме урока

Учитель: С какой теоремой познакомились на прошлом уроке?

Как она звучит для приведенного квадратного уравнения? (Сл. 3)

Как можно ее записать для неприведенного квадратного

уравнения. (Сл. 4)


Задание на доске: решить уравнения и сделать проверку с помощью теоремы Виета (работают 4 ученика)


1. х2 – 9 = 0;

2. 3х2 + 15х = 0;

3. х2 – 4х – 11 = 0;

4. 2х2 + 5х – 3 = 0.



В это время фронтальная работа с классом:

1 Составить квадратное уравнение, корни которого известны

а) х1 = 2; х2 = - 7 Решение:

p = - ( 2 – 7) = - (- 5) = 5

q = 2 · (-7) = - 14

х2 + 5х – 14 = 0 (Сл.5)

б) х1 = - 2; х2 = - 5 Решение:

p = - (- 2 – 5)= 7

q = -2 · (-5) = 10

х2 + 7х + 10 = 0 (Сл.6)



в) х1 = 0,5; х2 = 0,75 Решение:

p = - (0,5 + 0,75)= - 1,25

q = 0,5 · 0,75 = 0, 375

х2 – 1,25х + 0,375 = 0

2 – 10х + 3 = 0 (Сл.7)


2. Составить квадратное уравнение, если а = 2, х1 = 4, х2 = - 1

Решение:

p = - (4 - 1)= - 3

q = 4 · (-1) = - 4

х2 – 3х - 4 = 0

2 – 6х – 8 = 0 (Сл.8)

Проверка работы у доски:


1. х2 – 9 = 0; а = 1; в= p = 0; с =q = - 9.

(х – 3)(х+3) = 0; х1 + х2 = 3 + (-3) = 0 = - p

х1 = 3; х2 = - 3. х1 · х2 = 3 · (-3) = - 9 = q


2. 3х2 + 15х = 0; а = 3; в = 15; с = q = 0.

3х(х + 5) = 0; p = 5;

х1 = 0; х2 = - 5. х1 + х2 = 0 + (-5) = - 5 = - p

х1 · х2 = 0 · (-5) = 0 = q


3. х2 – 4х – 11 = 0; а = 1; в= p = - 4; с =q = - 11.

Х1 = 2 + √15; х2 = 2 - √15. х1 + х2 = 2 + √15+ 2 - √15 = 4 = -p

х1 · х2 =(2 + √15)( 2 - √15) = 4 – 15 = - 11 = q


4. 2х2 + 5х – 3 = 0. а = 2; в = 5; с = - 3;

х1 = 0,5; х2 = - 3. p = 2,5; q = - 1,5.

Х1 + х2 = 0,5 + (-3) = - 2,5 = - p

х1 · х2 = 0,5 · (-3) = - 1,5 = q


Связь знаков и модулей корней приведенного квадратного уравнения с знаками и модулями его коэффициентов.

Учитель: Можно ли находить корни квадратного уравнения без вычисления дискриминанта?

Ответ – да, но при условии, если уравнение приведенное, а корни целочисленные. Теорема, обратная теореме Виета гласит: если найдутся два числа, сумма которых равна числу противоположному коэффициенту при х, а их произведение есть свободное слагаемое приведенного квадратного уравнения, то эти числа являются корнями данного уравнения.

Такой способ решения называется способом подбора, и этим способом можно пользоваться наиболее результативно, если уловить связь знаков и модулей корней приведенного квадратного уравнения с знаками и модулями его коэффициентов. Попробуем эту связь объединить в таблицу:


(Сл.9) х2 + pх + q = 0


q 0

p 0

х1 ׀q׀ = ׀ х1 ׀ · ׀ х2 ׀

х2 ׀p׀ = ׀ х1 ׀ + ׀ х2 ׀

q 0

p

х1 0 ׀q׀ = ׀ х1 ׀ · ׀ х2 ׀

х2 0 ׀p׀ = ׀ х1 ׀ + ׀ х2 ׀

q

p 0

х1 ׀q׀ = ׀ х1 ׀ · ׀ х2 ׀

х2 0 ׀p׀ = ׀ х1 ׀ - ׀ х2 ׀

q

p

х1 ׀q׀ = ׀ х1 ׀ · ׀ х2 ׀

х2 0 ׀p׀ = ׀ х2 ׀ - ׀ х1 ׀



Решение приведенных квадратных уравнений способом подбора

(фронтальная работа с классом, уравнения на карточках)


1) х2 – х – 6 = 0

х1 + х2 = 1; х1 · х2 = - 6; х1 = 3; х2 = - 2.


2) х2 + 5х + 4 = 0

х1 + х2 = - 5; х1 · х2 = 4; х1 = - 1; х2 = - 4.


3) х2 – 11х + 18 = 0

х1 + х2 = 11; х1 · х2 = 18; х1 = 9; х2 = 2.


4) х2 + 7х – 18 = 0

х1 + х2 = - 7; х1 · х2 = - 18; х1 = 2; х2 = - 9.


5) х2 – 3х – 4 = 0

х1 + х2 = 3; х1 · х2 = - 4; х1 = 4; х2 = - 1.


6) х2- 5х + 6 = 0

х1 + х2 = 5; х1 · х2 = 6; х1 = 3; х2 = 2.


7) х2 + 11х + 30 = 0

х1 + х2 = - 11; х1 · х2 = 30; х1 = - 5; х2 = - 6.

8) х2 – х – 30 = 0

х1 + х2 = 1; х1 · х2 = - 30; х1 = 6; х2 = - 5.















Тест на проверку усвоения темы:

( с использованием слайдов)


1) Один из корней данного уравнения равен 4, определите второй корень уравнения. (Сл.10)

1 вариант. 2 вариант

х2 + pх + 12 = 0 х2 + pх - 12 = 0

Варианты ответов: а) – 3; б) 8; в) 3; г) – 8.


2) Один из корней данного уравнения равен 2, определите второй корень уравнения. (Сл.11)

1 вариант. 2 вариант

х2 - 8х + q = 0 х2 + 8х + q = 0

Варианты ответов: а) 10; б) - 10; в) 6; г) – 6.


3) Определите знаки корней данного квадратного уравнения, если таковые имеются. (Сл.12)

1 вариант. 2 вариант

х2 + 3х + 1 = 0 х2 - 3х – 1= 0

Варианты ответов: а) корней нет;

б) оба коря отрицательные;

в) оба корня положительные;

г) корни разных знаков.


4) Корнями данного приведенного квадратного уравнения являются два числа (Сл.13)

1 вариант. 2 вариант

х2 + 5х – 6 = 0 х2 – 5х – 6 = 0

Варианты ответов: а) – 3 и 2; б) 3 и - 2; в) 6 и – 1; г) – 6 и 1.


5) Корнями данного квадратного уравнения являются два числа (Сл.14)

1 вариант. 2 вариант

2 – 6х + 4 = 0 2х2 + 6х + 4 = 0

Варианты ответов: а) 1 и 2; б) 4 и – 1; в) – 4 и 1; г) – 1 и – 2.


Ключ к тесту: (Сл.15)

1

2

3

4

5

1 вариант

в

в

б

г

а

2 вариант

а

б

г

в

г





Задание для разбора классом.


Не решая уравнения 5х2 – 13х – 6 = 0 найдите сумму квадратов его корней.

Решение: 5х2 – 13х – 6 = 0

х2 – 2,6х – 1,2 = 0

По теореме Виета х1 + х2 = 2,6; х1 · х2 = - 1,2;

По формуле квадрата суммы (х1 + х2 )2 = х12 + 2 х1 х2 + х22

х12 + х22 = (х1 + х2 )2 - 2 х1 х2


х12 + х22 = 2,62 – 2 · ( - 1,2) = 9,16.


Ответ: 9,16.



Подведение итогов урока.

Домашнее задание.




Получите в подарок сайт учителя

Предмет: Математика

Категория: Уроки

Целевая аудитория: 8 класс

Скачать
Теорема Виета

Автор: Сущенко Александр Петрович

Дата: 18.11.2015

Номер свидетельства: 255204

Похожие файлы

object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(26) "Теорема Виета "
    ["seo_title"] => string(16) "tieoriema-viieta"
    ["file_id"] => string(6) "107955"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1403514746"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(103) "Конспект урока алгебры в 8 классе по теме "Теорема Виета" "
    ["seo_title"] => string(64) "konspiekt-uroka-alghiebry-v-8-klassie-po-tiemie-tieoriema-viieta"
    ["file_id"] => string(6) "141474"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1418130364"
  }
}
object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(83) "Решение квадратных уравнений. Теорема Виета. "
    ["seo_title"] => string(51) "rieshieniie-kvadratnykh-uravnienii-tieoriema-viieta"
    ["file_id"] => string(6) "101444"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1402417588"
  }
}
object(ArrayObject)#875 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(89) "Приведенное квадратное уравнение. Теорема Виета"
    ["seo_title"] => string(46) "privedennoe_kvadratnoe_uravnenie_teorema_vieta"
    ["file_id"] => string(6) "594947"
    ["category_seo"] => string(7) "algebra"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1639595114"
  }
}
object(ArrayObject)#853 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(182) "Открытый урок алгебры  в 8 классе с применением технологии критического мышления  « Теорема Виета  »"
    ["seo_title"] => string(99) "otkrytyiurokalghiebryv8klassiesprimienieniiemtiekhnologhiikritichieskoghomyshlieniiatieoriemaviieta"
    ["file_id"] => string(6) "322607"
    ["category_seo"] => string(10) "matematika"
    ["subcategory_seo"] => string(5) "uroki"
    ["date"] => string(10) "1461640370"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

Распродажа видеоуроков!
1250 руб.
2090 руб.
1120 руб.
1870 руб.
1580 руб.
2640 руб.
1600 руб.
2660 руб.
ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства