kopilkaurokov.ru - сайт для учителей

Создайте Ваш сайт учителя Курсы ПК и ППК Видеоуроки Олимпиады Вебинары для учителей

Сценарий праздника "День победы"

Нажмите, чтобы узнать подробности

Сценарий к празднику "День победы"

Вы уже знаете о суперспособностях современного учителя?
Тратить минимум сил на подготовку и проведение уроков.
Быстро и объективно проверять знания учащихся.
Сделать изучение нового материала максимально понятным.
Избавить себя от подбора заданий и их проверки после уроков.
Наладить дисциплину на своих уроках.
Получить возможность работать творчески.

Просмотр содержимого документа
«Сценарий праздника "День победы"»

ОГЛАВЛЕНИЕ


ОГЛАВЛЕНИЕ 1

ВВЕДЕНИЕ 2

1. КОММУНИКАЦИОННАЯ СРЕДА И ПЕРЕДАЧА ДАННЫХ 3

1.1. Назначение и классификация компьютерных сетей 3

1.2. Обобщенная структура компьютерной сети 5

1.3. Классификация вычислительных сетей 7

1.4. Характеристика процесса передачи данных 8

1.4.1. Режимы передачи данных 8

1.4.2. Коды передачи данных 10

1.4.3. Аппаратная реализация передачи данных 11

2. ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ 16

2.1. Функциональные группы устройств в сети 16

2.2. Управление взаимодействием устройств в сети 17

2.3. Типовые топологии и методы доступа локальных сетей 19

2.3.1. Физическая передающая среда локальных сетей 19

2.3.2. Основные топологии ЛВС 21

2.4. Работа в локальной intranet-сети 23

2.4.1. Настройка рабочей станции для работы в intranet-сети 23

2.4.2. Настройка и использование ресурсов общего доступа 28

3. ЗАКЛЮЧЕНИЕ 32

ЛИТЕРАТУРА…………………………..……………………………………….33

ВВЕДЕНИЕ

Что такое компьютерная сеть? Для чего она нужна? Рассмотрим простой пример: пусть в небольшом офисе установлены два компьютера. По роду решаемых офисных задач оба компьютера имеют приблизительно одинаковые конфигурацию, программное и информационное обеспечение. По мере работы дисковое пространство обоих компьютеров заполняется и наступает момент модернизации, то есть покупки дополнительных жестких дисков. Стоимость такой простейшей модернизации составит около 1000 грн. Возможно ли другое решение? Возможно, если соединить два компьютера в сеть с помощью сетевых адаптеров и кабеля. Стоимость такой модернизации около 150 грн. Таким образом, применение сети позволит решать возникающие технические и организационные проблемы с наименьшими затратами.

Разумеется, в реальной жизни не все так тривиально. В данном пособии рассматриваются технические и программные аспекты построения и использования локальных компьютерных сетей, вопросы работы с глобальными компьютерными сетями, современные информационные ресурсы локальных и глобальных сетей, основы публикации документов в Web и основы информационной безопасности.

Работа современного менеджера немыслима без доступа к оперативной информации, современных коммуникационных возможностей. А именно эти возможности и предоставляют компьютерные сети. Кроме того, развитие современного бизнеса неуклонно направляется в сторону электронной коммерции, электронных платежей. В соответствии с прогнозами специалистов в ближайшие годы объемы электронного товарооборота достигнут 7 трлн. долларов в год. По мнению авторов, изложенный в пособии материал, будет полезен студентам экономических и управленческих специальностей как практическое руководство в освоении методов работы с современными сетевыми компьютерными технологиями.

Теоретическая часть ГЛАВА 1: КОММУНИКАЦИОННАЯ СРЕДА И ПЕРЕДАЧА ДАННЫХ 1.1 Назначение и классификация компьютерных сетей. Современное производство требует высоких скоростей обработки информации, удобных форм ее хранения и передачи. Необходимы также динамичные способы обращения к информации, поиска данных в заданные временные интервалы, реализации сложной математической и логической обработки данных. Управление крупными предприятиями и экономикой на уровне страны требуют участия в этом процессе достаточно крупных коллективов. Такие коллективы могут располагаться в различных районах города, регионах страны и даже в различных странах. Для решения задач управления, обеспечивающих реализацию экономической стратегии, становятся важными и актуальными скорость и удобство обмена информацией, а также возможность тесного взаимодействия всех участников в процессе выработки управленческих решений.

В эпоху централизованного использования ЭВМ с пакетной обработкой информации пользователи вычислительной техники предпочитали приобретать компьютеры, на которых можно было бы решать задачи почти всех классов. Однако, сложность решаемых задач обратно пропорциональна их количеству, и это приводило к неэффективному использованию вычислительной мощности ЭВМ при значительных материальных затратах. Нельзя не учитывать и тот факт, что доступ к ресурсам компьютеров был затруднен из-за существующей политики централизации вычислительных средств в одном месте.

Принцип централизованной обработки данных не отвечал высоким требованиям к надежности процесса обработки, затруднял развитие систем и не мог обеспечить необходимые временные параметры при диалоговой обработке данных в многопользовательском режиме. Кратковременный выход из строя центральной ЭВМ приводил к роковым последствиям для системы в целом, т. к. приходилось дублировать функции центральной ЭВМ, значительно увеличивая затраты на создание и эксплуатацию систем обработки данных.

Появление малых ЭВМ, микроЭВМ и, наконец, персональных компьютеров потребовало нового подхода к организации систем обработки данных, к созданию новых информационных технологий. Возникло логически обоснованное требование перехода от использования отдельных ЭВМ в системах централизованной обработки данных к распределенной обработке данных.

Распределенная обработка данных – обработка данных, выполняемая на независимых, но связанных между собой компьютерах, представляющих распределенную систему.

Для реализации распределенной обработки данных были созданы многомашинные ассоциации, структура которых разрабатывалась по одному из следующих направлений:

  • многомашинные вычислительные комплексы (МВК);

  • компьютерные (вычислительные) сети.

Многомашинный вычислительный комплекс – группа установленных рядом вычислительных машин, объединенных с помощью специальных средств сопряжения и совместно выполняющих единый информационно-вычислительный процесс.

Примечание. Под процессом понимается некоторая последовательность действий для решения задачи, определяемая программой.

Многомашинные вычислительные комплексы могут быть:

  • локальными при условии установки компьютеров в одном помещении, не требующих для взаимосвязи специального оборудования и каналов связи;

  • дистанционными, если некоторые компьютеры комплекса установлены на зна­чительном расстоянии от центральной ЭВМ и для передачи данных используются телефонные каналы связи.

Компьютерная (вычислительная) сеть – совокупность компьютеров и терминалов, соединенных с помощью каналов связи в единую систему, удовлетворяющую требованиям распределенной обработки данных.

Примечание. Под системой понимается автономная совокупность из одной или нескольких ЭВМ, программного обеспечения, периферийного оборудования, терминалов, средств передачи данных, физических процессов и операторов, способная осуществлять обработку информации и выполнять функции взаимодействия с другими системами.

1.2 Обобщенная структура компьютерной сети. Компьютерные сети являются высшей формой многомашинных ассоциаций. Выделим основные отличия компьютерной сети от многомашинного вычислительного комплекса.

Первое отличие – размерность. В состав многомашинного вычислительного комплекса входят обычно две, максимум три ЭВМ, расположенные преимущественно в одном помещении. Вычислительная сеть может состоять из десятков и даже сотен ЭВМ, расположенных на расстоянии друг от друга от нескольких метров до десятков, сотен и даже тысяч километров.

Второе отличие – разделение функций между ЭВМ. Если в многомашинном вычислительном комплексе функции обработки, передачи данных и управления системой могут быть реализованы в одной ЭВМ, то в вычислительных сетях эти функции распределены между различными ЭВМ.

Третье отличие – необходимость решения в сети задачи
маршрутизации сообщений. Сообщение от одной ЭВМ к другой в сети может быть передано по различным маршрутам в зависимости от состояния каналов связи, соединяющих ЭВМ.

Объединение в один комплекс средств вычислительной техники, аппаратуры связи и каналов передачи данных предъявляет специфические требования со стороны каждого элемента многомашинной ассоциации, а также требует формирования специальной терминологии.

Абоненты сети – объекты, генерирующие или потребляющие информацию в сети. Абонентами сети могут быть отдельные ЭВМ, комплексы ЭВМ, терминалы, промышленные роботы, станки с числовым программным управлением и т.д. Любой абонент сети подключается к станции.

Станция – аппаратура, которая выполняет функции, связанные с передачей и приемом информации.

Совокупность абонента и станции принято называть абонентской системой. Для организации взаимодействия абонентов необходима физическая передающая среда.

Физическая передающая среда – линии связи или пространство, в котором распространяются электрические сигналы, и аппаратура передачи данных.

На базе физической передающей среды строится коммуникационная сеть, которая обеспечивает передачу информации между абонентскими системами.

Такой подход позволяет рассматривать любую компьютерную сеть как совокупность абонентских систем и коммуникационной сети.

1.3 Классификация вычислительных сетей. В зависимости от территориального расположения абонентских систем вычислительные сети можно разделить на три основных класса:
  • глобальные (WAN – Wide Area Network);

  • региональные (MAN – Metropolitan Area Network);

  • локальные (LAN – Local Area Network).

Глобальная вычислительная сеть объединяет абонентов, расположенных в различных странах, на различных континентах. Взаимодействие между абонентами такой сети может осуществляться на базе телефонных линий связи, радиосвязи и систем спутниковой связи. Глобальные вычислительные сети позволят решить проблему объединения информационных ресурсов всего человечества и организации доступа к этим ресурсам.

Региональная вычислительная сеть связывает абонентов, которые находятся на значительном расстоянии друг от друга. Она может включать абонентов внутри большого города, экономического региона, отдельной страны. Обычно расстояние между абонентами региональной вычислительной сети составляет десятки и сотни километров.

Локальная вычислительная сеть объединяет абонентов, расположенных в пределах небольшой территории. В настоящее время не существует четких ограничений на территориальный разброс абонентов локальной вычислительной сети. Обычно такая сеть привязана к конкретному месту. К классу локальных вычислительных относятся сети отдельных предприятий, фирм, банков, офисов и т.д. Протяженность такой сети можно ограничить пределами 2 – 2,5 км.

Объединение глобальных, региональных и локальных вычислительных сетей позволяет создавать многосетевые иерархии. Они обеспечивают мощные, экономически целесообразные средства обработки огромных информационных массивов и доступ к неограниченным информационным ресурсам. На рис. 5 приведена одна из возможных иерархий вычислительных сетей. Локальные вычислительные сети могут входить как компоненты в состав региональной сети, региональные сети – объединяться в составе глобальной сети и, наконец, глобальные сети могут также образовывать сложные структуры.

Пример 4. Компьютерная сеть Internet является наиболее популярной глобальной сетью. В ее состав входит множество свободно соединенных сетей. Внутри каждой сети, входящей в Internet, существует конкретная структура связи, поддерживается определенная дисциплина управления. Внутри Internet структура и методы соединений между раз­личными сетями для конкретного пользователя не имеют никакого значения.

Персональные компьютеры, ставшие в настоящее время непременным элементом любой системы управления, привели к буму в области создания локальных вычислительных сетей. Это, в свою очередь, вызвало необходимость в разработке новых информационных технологий.

Практика применения персональных компьютеров в различных отраслях науки, техники и производства показала, что наибольшую эффективность от внедрения вычислительной техники обеспечивают не отдельные автономные ПК, а локальные вычислительные сети.


    1. Характеристика процесса передачи данных


      1. Режимы передачи данных

Любая коммуникационная сеть должна включать следующие основные компоненты: передатчик, сообщение, средства передачи, приемник.

Передатчик – устройство, являющееся источником данных.

Приемник – устройство, принимающее данные. Приемником могут быть компьютер, терминал или какое-либо цифровое устройство.


ИЕРАРХИЯ КОМПЬЮТЕРНЫХ СЕТЕЙ


Рис. 5


Сообщение – цифровые данные определенного формата, предназначенные для передачи. Это может быть файл базы данных, таблица, ответ на запрос, текст или изображение

Средства передачи – физическая передающая среда и специальная аппаратура, обеспечивающая передачу сообщений. Для этого в вычислительных сетях используются различные типы каналов связи. Наиболее распространены выделенные телефонные каналы и специальные каналы для передачи цифровой информации. Применяются также радиоканалы и каналы спутниковой связи.

Особняком в этом отношении стоят ЛВС, где в качестве передающей среды используются витая пара проводов, коаксиальный кабель и оптоволоконный кабель.

Для характеристики процесса обмена сообщениями в вычислительной сети по каналам связи используются следующие понятия: режим передачи, код передачи, тип синхронизации.

Режим передачи. Существуют три режима передачи: симплексный, полудуплексный и дуплексный.

Симплексный режим – передача данных только в одном направлении.

Примером симплексного режима передачи является система, в которой ин­формация, собираемая с помощью датчиков, передается для обработки на ЭВМ. В вычисли­тельных сетях симплексная передача практически не используется,

Полудуплексный режим – попеременная передача информации, когда источник и приемник последовательно меняются местами.

Яркий пример работы в полудуплексном режиме – разведчик, передающий в центр информацию, а затем принимающий инструкции из центра.

Дуплексный режим – одновременные передача и прием сообщений. Это – наиболее скоростной режим работы. Он позволяет эффективно использовать вычислительные возможности быстродействующих ЭВМ в сочетании с высокой скоростью передачи данных по каналам связи. Пример дуплексного режима – телефонный разговор (рис. 6).


СИМПЛЕКСНЫЙ РЕЖИМ ПЕРЕДАЧИ

ПОЛУДУПЛЕКСНЫЙ РЕЖИМ ПЕРЕДАЧИ

ДУПЛЕКСНЫЙ РЕЖИМ ПЕРЕДАЧИ


Рис. 6


      1. Коды передачи данных

Для передачи информации по каналам связи используются специальные коды. Они стандартизованы и определены рекомендациями ISO (International Organization for Standardization) – Международной организации по стандартизации (МОС) или Международного консультативного комитета по телефонии и телеграфии (МККТТ).

Наиболее распространенным кодом передачи по каналам связи является код KOI-7, принятый для обмена информацией практически во всем мире. KOI-7 позволяет кодировать 128-символьные таблицы, т. е. фактически кодирует только англоязычные и числовые данные. Для кодирования символов национальных алфавитов применяют модификацию кода KOI-7, которую называют KOI-8. Это восьмибитная кодовая таблица, кодирующая 28=256 символов английского и национальных алфавитов, а также числовые данные. Для русского языка применяют таблицу KOI-8R, украинского – KOI-8U и т.д. Кроме того, в последние годы широкое развитие получила также передача данных в кодовых таблицах ASCII, Win-1251, Unicode.

Следует обратить внимание еще на один способ связи между ЭВМ, когда ЭВМ объединены в комплекс с помощью интерфейсного кабеля и с помощью двухпроводной линии связи.

Примечание. Интерфейсный кабель – это набор проводов, по которым передаются сигналы от одного устройства компьютера к другому. Чтобы обеспечить быстродействие, для каждого сигнала выделен отдельный провод. Сигналы передаются в определенной последовательности и в определенных комбинациях.

Для передачи кодовой комбинации используются столько линий, сколько битов эта комбинация содержит. Каждый бит передается по отдельному проводу. Это параллельная передача или передача параллельным кодом. Предпочтение такой передаче отдается при организации локальных МВК, для внутренних связей ЭВМ и при небольших расстояниях между абонентами сети. Передача параллельным кодом обеспечивает высокое быстродействие, но требует повышенных затрат на создание физической передающей среды и обладает плохой помехозащищенностью. В вычислительных сетях передача параллельными кодами не используется.

Для передачи кодовой комбинации по двухпроводной линии группа битов передается по одному проводу бит за битом. Это передача информации последовательным кодом. Она, естественно, медленнее, так как требует преобразования данных в параллельный код для дальнейшей обработки в ЭВМ, но экономически более выгодна для передачи сообщений на большие расстояния.


      1. Аппаратная реализация передачи данных

2.4.3.1. Характеристики коммуникационной сети можно использовать для оценки ее качества:

  • скорость передачи данных по каналу связи;

  • пропускную способность канала связи;

  • достоверность передачи информации;

  • надежность канала связи и модемов.

Скорость передачи данных по каналу связи измеряется количеством битов информации, передаваемых в единицу времени – секунду (bps – bit per second).

Примечание. Часто используется единица измерения скорости – бод, т.е. число изменений состояния среды передачи в секунду. Так как каждое изменение состояния может соответствовать нескольким битам данных, то реальная скорость в битах в секунду может превышать скорость в бодах.

Скорость передачи данных зависит от типа и качества канала связи, типа используемых модемов и принятого способа синхронизации. Так, для асинхронных модемов и телефонного канала связи диапазон скоростей составляет 300 - 57600 бит/с, а для синхронных – до 2 Мбит/с.

Для пользователей вычислительных сетей значение имеют не абстрактные биты в секунду, а информация, единицей измерения которой служат байты или знаки. Поэтому более удобной характеристикой канала является его пропускная способность, которая оценивается количеством знаков, передаваемых по каналу за единицу времени – секунду. При этом в состав сообщения включаются и все служебные символы. Теоретическая пропускная способность определяется скоростью передачи данных. Реальная пропускная способность зависит от ряда факторов, среди которых и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений. Единица измерения пропускной способности канала связи – знак в секунду (cps – character per second).

Существенной характеристикой коммуникационной системы любой сети является достоверность передаваемой информации. Так как на основе обработки информации о состоянии объекта управления принимаются решения о том или ином ходе процесса, то от достоверности информации в конечном счете может зависеть судьба объекта. Достоверность передачи информации оценивают как отношение количества ошибочно переданных знаков к общему числу переданных знаков. Требуемый уровень достоверности должны обеспечивать как аппаратура, так и канал связи. Нецелесообразно использовать дорогостоящую аппаратуру, если относительно уровня достоверности канал связи не обеспечивает необходимых требований. Единица измерения достоверности: количество ошибок на знак – ошибок/знак.

Для вычислительных сетей этот показатель должен лежать в пределах 10-6 – 10-7 ошибок/знак, т.е. допускается одна ошибка на миллион переданных знаков или на десять миллионов переданных знаков.

Наконец, надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы. Вторая характеристика позволяет эффективнее оценить надежность системы. Единица измерения надежности: среднее время безотказной работы в часах.

Для вычислительных сетей среднее время безотказной работы должно быть достаточ­но большим и составлять, как минимум, несколько тысяч часов.


2.4.3.2. Протоколы компьютерной сети – набор правил, определяющий взаимодействие двух одноименных уровней модели взаимодействия открытых систем в различных абонентских ЭВМ.

Протокол – это не программа. Правила и последовательность выполнения действий при обмене информацией, определенные протоколом, должны быть реализованы в программе. Обычно функции протоколов различных уровней реализуются в драйверах для различных вычислительных сетей.

Для организации надежного сетевого взаимодействия необходима стандартизация. Она реализована в виде особой спецификации OSI Reference Model (сетевая модель OSI). Данная модель представляет семиуровневый подход к сетевому взаимодействию (рис. 7):

1. Application layer

2. Presentation layer

3. Session layer

4. Transport layer

5. Network layer

6. Data Link layer

7. Physical layer

Рис. 7


  • Application layer (уровень приложений, прикладной уровень) – представляет набор интерфейсов для приложений, позволяющий получить доступ к сетевым службам. Примеры протоколов, используемых на этом уровне: HTTP – доступ к ресурсам World Wide Web; FTP – протокол передачи/приема файлов; SMTP – протокол передачи электронной почты и др.

  • Presentation layer (уровень представления) – преобразует данные в общий формат для передачи по сети.

  • Session layer (сеансовый уровень) – позволяет двум сторонам поддерживать по сети продолжительное взаимодействие, называемое сеансом.

  • Transport layer (транспортный уровень) – управляет передачей по сети. Примеры: NetBIOS/NetBEUI; SPX, TCP.

  • Network layer (сетевой уровень) – осуществляет адресацию сообщений для доставки, а также преобразует логические сетевые адреса и имена в соответствущие им физические. Примеры: IPX, IP

  • Data Link layer (канальный уровень) – посылает специальные пакеты данных с сетевого уровня на физический.

  • Physical layer (физический уровень) – осуществляет преобразование потока битов в сигналы, и наоборот.

В современных сетях используются так называемые семейства протоколов. Наиболее известны из них: IPX/SPX и TCP/IP.

Протоколы IPX/SPX разработаны для локальных сетей стандарта Novell Net Ware, но релизованы и для сетей стандарта Microsoft. В их основе транспортный протокол SPX и сетевой протокол IPX.

Семейство протоколов TCP/IP на основе транспортного протокола TCP и сетевого протокола IP включает в себя множество протоколов разного уровня: протокол управления сетью SNMP; протокол динамической конфигурации сети DHCP: служба имен Windows в Internet-протоколах WINS; доменная служба имен DNS; вышеупомянутые прикладные протоколы HTTP, SMTP, FTP, а также протоколы доступа к электронной почте POP3 и IMAP, к телеконференциям USENET NNTP и др.

Первоначально протоколы TCP/IP использовались только в глобальной сети Internet, но со временем стали основой для локальных сетей типа intranet. В сети этого типа используются не только те же протоколы, что и в Internet, но и такие же информационные ресурсы, а следовательно, и прикладное программное обеспечение. Пользователь intranet-сети может даже не заметить, из какой сети он получает информацию, из локальной или глобальной, так как intranet-сети, как правило, соединены с Internet.

В дальнейшем мы будем рассматривать только intranet-сети.

2.4.3.3. Аппаратные средства. Чтобы обеспечить передачу информации из ЭВМ в коммуникационную среду, необходимо согласовать сигналы внутреннего интерфейса ЭВМ с параметрами сигналов, передаваемых по каналам связи. При этом должно быть выполнено как физическое согласование (форма, амплитуда и длительность сигнала), так и кодовое.

Технические устройства, выполняющие функции сопряжения ЭВМ с каналами связи, называются адаптерами или сетевыми адаптерами (NIC – Network Interface Card). Один адаптер обеспечивает сопряжение с ЭВМ одного канала связи. Как правило, установка и настройка современного сетевого адаптера не вызывает затруднений,
т. к. они поддерживают стандарт Plug and Play. Поэтому процедура установки и настройки сводится лишь к установке драйвера устройства, да и то, если операционная система «не знакома» с этим типом устройств. Если же применяются устаревшие конструкции (они размещаются в слотах типа ISA), то возможны конфликты с другим оборудованием (чаще всего это звуковые карты или последовательный порт COM1 или COM2).

Кроме одноканальных адаптеров используются и многоканальные устройства – мультиплексоры передачи данных или просто мультиплексоры.

Мультиплексор передачи данных – устройство сопряжения ЭВМ с несколькими каналами связи.

Мультиплексоры передачи данных использовались в системах телеобработки данных – первом шаге на пути к созданию вычислительных сетей. В дальнейшем при появлении сетей со сложной конфигурацией и с большим количеством абонентских систем для реализации функций сопряжения стали применяться специальные связные процессоры.

Для передачи цифровой информации по каналу связи необходимо поток битов преобразовать в аналоговые сигналы, а при приеме информации из ка­нала связи в ЭВМ выполнить обратное действие – преобразовать аналоговые сигналы в поток битов, которые может обрабатывать ЭВМ. Аналоговый сигнал представляет собой специальным образом обработанный (модулированный) сигнал несущей частоты. Такие преобразования выполняет специальное устройство – модем.

Модем – устройство, выполняющее модуляцию и демодуляцию несущих сигналов при передаче их из ЭВМ в канал связи и при приеме ЭВМ из канала связи. В качестве несущего сигнала может использоваться практически любой аналоговый сигнал (телефонный, телеграфный, телевизионный и т.д.). В соответствии с типом несущего сигнала различают и типы модемов. Наиболее распространенными из них являются телефонные, но в последнее время все более широкое распространение получают DSL-модемы, позволяющие передавать информацию по кабельным сетям с высокой скоростью (это может быть и обычный телефонный кабель, кабельное телевидение и т.п.).

Наиболее дорогой компонент вычислительной сети – канал связи. Поэтому при построении ряда вычислительных сетей стараются сэкономить на каналах связи, коммутируя несколько внутренних каналов связи на один внешний. Для выполнения функции коммутации используются специальные устройства – концентраторы.

Концентратор – устройство, коммутирующее несколько каналов связи и один путем частотного разделения в сетевой конфигурации «звезда» (см. ниже), действует на физическом уровне сетевой модели OSI. Различают три основных типа концентраторов: пассивные, активные и интеллектуальные. Пассивный концентратор представляет собой только точку разветвления сети. Активный концентратор (hub) не только разветвляет сеть, но и усиливает сигнал, а, следовательно, требует дополнительной энергии. Интеллектуальные концентраторы (switch), кроме того, осуществляют функции маршрутизации.

В ЛВС, где физическая передающая среда представляет собой кабель ограниченной длины, для увеличения протяженности сети используются специальные устройства – повторители.

Повторитель – устройство, действующее на физическом уровне сетевой модели OSI и обеспечивающее сохранение формы и амплитуды сигнала при передаче его на большее, чем предусмотрено данным типом физической передающей среды, расстояние.

Существуют локальные и дистанционные повторители. Локальные повторители позволяют соединять фрагменты сетей, расположенные на расстоянии до 50 м, а дистанционные – до 2000 м.

Маршрутизатор (router) – устройство, работающее на сетевом уровне сетевой модели OSI и связывающее два и более сетевых сегмента (или подсети). Маршрутизатор получает информацию о сетевом адресе пакета и сравнивает его с элементами таблицы маршрутизации. Если имеется совпадение, пакет направляется по нужному адресу. Маршрутизаторы могут выполняться в виде отдельных устройств. Но роль маршрутизатора может выполнять и специальное программное обеспечение, установленное на сервере.

Шлюз (gateway) – метод осуществления связи между двумя или несколькими сетевыми сегментами. Другой функцией шлюза является преобразование протоколов, например, IPX/SPX в TCP/IP и наоборот. В качестве шлюзов обычно выступают компьютеры со специальным программным обеспечением.

  1. ЛОКАЛЬНЫЕ ВЫЧИСЛИТЕЛЬНЫЕ СЕТИ



    1. Работа в локальной intranet-сети


      1. Настройка рабочей станции для работы в intranet-сети

Если компьютер оснащен сетевой картой Ethernet, то после ее настройки (см. п. 2.4.3.3) на рабочем столе появляется специальная системная папка Сетевое окружение. Открыв ее двойным щелчком, получаем окно, представленное на рис. 12. Попытавшись открыть пиктограмму Вся сеть в этом окне, получим результат, показанный на рис. 13. Это говорит о том, что доступ к локальной сети отсутствует и причина этого, скорее всего, заключается в том, что рабочая станция не настроена для работы в сети.

Порядок настройки сети следующий.

  • щелчком правой клавиши мыши на папке Сетевое окружение вызвать контекстное меню и выбрать команду Свойства;


Рис. 12


Рис. 13


  • в открывшемся окне Сеть (рис.14) на вкладке Конфигурация проверить, какие устройства и протоколы установлены на данной рабочей станции. Если компьютер из сетевых устройств имеет только сетевую карту, то вкладка должна содержать одну строку, соответствующую этому устройству, одну строку, соответствующую протоколу TCP/IP, и строку, соответствующую программе-клиенту для работы в сети Microsoft. Кроме того, здесь может содержаться строка: Служба доступа к файлам и принтерам сетей Microsoft. Если этой строки нет, то нажимают кнопку Доступ к файлам и принтерам и в открывшемся окне (рис.15), устанавливают флажки, отвечающие за то, чтобы файлы и принтеры данной рабочей станции были доступны другим компьютерам в сети;

  • для настройки сетевых адресов, выделяемых администратором сети, выделяют строку TCP/IP и нажимают кнопку Свойства. В открывшемся окне Свойства TCP/IP (рис. 16) имеется несколько вкладок. Если данная сеть не имеет сервера DHCP, автоматически выделяющего адреса рабочим станциям, то на вкладке IP-адрес (рис. 16) заполняют поля IP-адреса и маски подсети. Если адреса в сети выделяются автоматически, то необходимо установить соответствующий селектор;

    Рис.14



    Рис.15

  • на вкладке Шлюз (рис. 17) заполняют поле адреса сервера, выполняющего роль шлюза и нажимают кнопку Добавить;

  • на вкладке Конфигурация DNS (рис. 18) включают селектор Включить DNS, записывают имена рабочей станции и домена, распознаваемых сервером DNS, а также IP-адрес сервера DNS и закрывают окно Свойства TCP/IP;

  • на вкладке Идентификация окна Сеть (рис. 19) заполняют поля Имя компьютера, Рабочая группа и Описание компьютера. Имя компьютера – это сетевое имя компьютера, то есть имя, под которым данная рабочая станция будет видна в сети. Рабочая группа – это объединение рабочих станций, относящихся к одному подразделению организации. Описание компьютера – это комментарий, который позволит определить принадлежность рабочей станции, если сетевое имя недостаточно информативно;

  • кнопка Применить вводит в действие произведенные настройки.

После перезагрузки компьютера открытая папка Сетевое окружение принимает вид, представленный на рис. 20а. Здесь показаны компьютеры, относящиеся к той же рабочей группе, что и данная рабочая станция, и имеющие ресурсы для общего использования в сети (диски, папки и принтеры). Открытие пиктограммы Вся сеть, позволяет увидеть все рабочие группы сети (рис. 20б) и получить к ним доступ.


Рис. 16


Рис. 17




Рис. 18


Рис. 19


б

Рис. 20


      1. Настройка и использование ресурсов общего доступа

Доступными для общего использования в сети могут быть только ресурсы (диски, папки и принтеры), предназначенные для этого их владельцем, то есть пользователем, работающим с компьютером, на котором эти ресурсы находятся.

Чтобы открыть ресурс для общего пользования, необходимо в соответствующем окне (Мой компьютер или Проводник для дисков и папок, Принтеры для принтеров) вызвать контекстное меню щелчком правой клавиши мыши (рис. 21) и выбрать в нем команду Доступ. Вид окон представлен на рис. 22.

Рис. 21

а


б

Рис. 22


Чтобы ресурс стал общим, сети необходимо переключить селектор Локальный ресурс на Общий ресурс (см. рис. 22). Соответственно, обратная операция приводит к тому, что ресурс в сети не виден. Процедуру открытия ресурса для общего доступа часто называют компьютерным жаргонизмом «расшаривание» (от английского share – разделять).

Сетевое имя ресурса обычно предлагается системой и не отличается от имени этого ресурса на локальном компьютере (см. рис. 22), но при необходимости может быть задано произвольно. Заметки – это комментарий к ресурсу, облегчающий ориентацию в сети.

Для дисков и папок могут быть заданы два режима доступа (см. рис. 22а): Полный или Только для чтения. Каждый из ресурсов (диск или папка) может также открываться в режиме, задаваемом паролем.

При вводе пароля его отображение в поле заменяется символом * для обеспечения скрытности. При вводе пароля система потребует его повторного ввода для подтверждения.

Для принтеров (см. рис. 22б) существует только один режим, но он также может защищаться паролем.

Каждый «расшаренный» ресурс имеет уникальное сетевое имя, имеющее следующий синтаксис:

\\ \\…

Например: \\server2000\slavio – это папка slavio, находящаяся на компьютере server2000; или \\class101\c\files - это папка files, находящаяся на диске с компьютера class101, открытом для общего доступа.

Большинство современных приложений Windows позволяют получить доступ к файлам, хранящимся на «расшаренных» ресурсах, таким же образом, как и к файлам, хранящимся на локальных ком-пьютерах через команду Открыть (Open) в меню Файл (File) с использованием папки Сетевое окружение. Однако некоторые приложения не позволяют сделать это. Выход из такой ситуации заключается в подключении сетевых дисков (рис. 23). Для выполнения этой операции вызывают контекстное меню папки Сетевое окружение (рис. 23а), выбирают команду Подключить сетевой диск и в окне (рис. 23б) вводят сетевое имя подключаемого ресурса.


а

б

Рис. 23


Если подключаемый ресурс будет использоваться часто, а предоставляющий его компьютер постоянно включен, то имеет смысл установить флажок Автоматически подключать при входе в систему. Если подключаемый ресурс защищен паролем, то откроется окно для ввода (рис. 24).


Рис. 24


Вновь подключенный сетевой диск будет обозначен буквой, следующей за именем последнего дискового устройства локального компьютера. Например, если компьютер имеет устройство для чтения компакт-дисков CD ROM, обозначенный буквой E:, то первый подключенный сетевой диск будет обозначен буквой F:, следующий G: и так далее (рис. 25).


Рис. 25

Если локальный компьютер не оснащен принтером, но имеются доступные принтеры в сети, то в процессе установки принтера (Пуск – Настройка – Принтеры – Установка принтера) необходимо в качестве способа подключения принтера к компьютеру выбрать селектор Сетевой принтер (рис. 26).

Сетевое имя принтера записывается по образцу рис. 27. Его также можно выбрать с помощью кнопки Обзор. На рис. 28 представлен вид окна Принтеры, в котором видно, что к компьютеру подключены два принтера: локальный Epson FX-1170 (используется по умолчанию и доступен к использованию в сети) и сетевой Canon LBP-810.


Рис. 26

Рис. 27


Рис. 28

  1. ЗАКЛЮЧЕНИЕ


В заключение необходимо отметить, что современные компьютерные технологии тесно связаны с сетевыми технологиями. Время автономной работы компьютеров и пользователей прошло. Вместе с тем, данный факт выдвигает новые качественные требования к подготовке пользователей, так как надежная и безопасная работа всей сети зачастую зависит от уровня квалификации каждого. Данный реферат является попыткой комплексного изложения материала, необходимого при подготовке к работе в сети. Именно здесь затронуты программно-технические аспекты работы в сети, приведен материал, классифицирующий современные информационные ресурсы, даны практические рекомендации по их применению.

ЛИТЕРАТУРА


  1. Титтел Э., Хадсон К., Стюарт Дж. М. Networking Essentials. Сертификационный экзамен – экстерном (экзамен 70-058). – Спб.: Питер Ком, 1999. ­– 384 с.: ил.

  2. Персональные компьютеры в сетях TCP/IP. – Киев: издательская группа BHV, 1997.

  3. Оптимизация и настройка Windows NT4 для профессионалов.– СПб: Питер Ком, 1998.

  4. Бесстужев И.Н. Организация локальных сетей на базе персональных компьютеров.– М.: СК Пресс, 1995.

  5. COMPUTERCLUB: ежемесячный журнал по компьютерам и телекоммуникациям. 1999.– № 11.

  6. http://www.citforum.ru – описание компьютерных технологий, аналитическая информация

  7. http://astu.secna.ru/russian/students/personal/


13


Получите в подарок сайт учителя

Предмет: Музыка

Категория: Мероприятия

Целевая аудитория: Прочее.
Урок соответствует ФГОС

Скачать
Сценарий праздника "День победы"

Автор: Чуприк Анастасия Игоревна

Дата: 07.10.2018

Номер свидетельства: 479880

Похожие файлы

object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(64) "Сценарий праздника   «День Победы» "
    ["seo_title"] => string(35) "stsienarii-prazdnika-dien-pobiedy-2"
    ["file_id"] => string(6) "199049"
    ["category_seo"] => string(21) "doshkolnoeObrazovanie"
    ["subcategory_seo"] => string(12) "meropriyatia"
    ["date"] => string(10) "1428507034"
  }
}
object(ArrayObject)#873 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(98) "Сценарий праздника "День Победы" в младшей группе ДОУ "
    ["seo_title"] => string(58) "stsienarii-prazdnika-dien-pobiedy-v-mladshiei-ghruppie-dou"
    ["file_id"] => string(6) "217781"
    ["category_seo"] => string(10) "vneurochka"
    ["subcategory_seo"] => string(12) "planirovanie"
    ["date"] => string(10) "1433472765"
  }
}
object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(60) "Сценарий праздника "День Победы" "
    ["seo_title"] => string(33) "stsienarii-prazdnika-dien-pobiedy"
    ["file_id"] => string(6) "118826"
    ["category_seo"] => string(10) "vneurochka"
    ["subcategory_seo"] => string(12) "meropriyatia"
    ["date"] => string(10) "1413268412"
  }
}
object(ArrayObject)#873 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(90) "Сценарий праздника "День Победы" в старшей группе"
    ["seo_title"] => string(48) "stsenarii_prazdnika_den_pobedy_v_starshei_gruppe"
    ["file_id"] => string(6) "577846"
    ["category_seo"] => string(21) "doshkolnoeObrazovanie"
    ["subcategory_seo"] => string(12) "meropriyatia"
    ["date"] => string(10) "1618064713"
  }
}
object(ArrayObject)#851 (1) {
  ["storage":"ArrayObject":private] => array(6) {
    ["title"] => string(124) "Сценарий праздника "День Победы" для старшего дошкольного возраста."
    ["seo_title"] => string(73) "stsienarii_prazdnika_dien_pobiedy_dlia_starshiegho_doshkol_nogho_vozrasta"
    ["file_id"] => string(6) "422448"
    ["category_seo"] => string(21) "doshkolnoeObrazovanie"
    ["subcategory_seo"] => string(12) "meropriyatia"
    ["date"] => string(10) "1497867166"
  }
}


Получите в подарок сайт учителя

Видеоуроки для учителей

Курсы для учителей

ПОЛУЧИТЕ СВИДЕТЕЛЬСТВО МГНОВЕННО

Добавить свою работу

* Свидетельство о публикации выдается БЕСПЛАТНО, СРАЗУ же после добавления Вами Вашей работы на сайт

Удобный поиск материалов для учителей

Проверка свидетельства